Psy
5036W, Fall 2004, 3 credits
Psychology Department , University
of Minnesota
Courses URL: courses.kersten.org
01:25 P.M. - 02:40 P.M Mondays and Wednesdays
Elliott 160
University Calendar
Instructor:
Daniel Kersten. Office: 212 Elliott Hall. Phone: 612 625-2589 email:
kersten@umn.edu
Office hours: Tuesdays 1-2 pm or by appointment.
TAs:
Fang Fang, Office:
N13 Elliott Hall. Phone: 625-1337 email: fang0057@umn.edu Office
hours:
Peter
Battaglia, Office: N13 Elliott Hall. Phone: 625-1337 email:
batt0086@umn.edu Office hours:
The visual perception of what is in the world is accomplished continually, instantaneously, and usually without conscious thought. The very effortlessness of perception disguises the underlying richness of the problem. We can gain insight into the processes and functions of human vision by studying the relationship between neural mechanisms and visual behavior through computer analysis and simulation. Students will learn about the anatomy and neurophysiology of vision and how they related to the phenomona of perception. An underlying theme will be to treat vision as a process of statistical inference. There will be in-class programming exercises using the language Mathematica. No prior programming experience is required; however, a backround in calculus and linear algebra is helpful.
Readings & software
Grade Requirements
The grade weights are:
Assignment due BEFORE
class start time (1:25 am) on the day due.
Late Policy: Assignments turned in within 24 hours following
the due date will have 15% deducted from the assignment score. Assignments
turned in between 24 and 48 hours following the due date will have 30% deducted
from the score. Assignments more than 48 hours late will receive a score
of zero.
ASSIGNMENT FAQs PAGE
ASSIGNMENT 3 FAQs
Check this section before each class for recent additions and updates.
To
see what the course looked like last time, with downloadable lecture notes,
see
Psy
5036W SPRING2003 Web Pages
Date |
Lecture | Main Readings |
Supplementary Material |
Assignments |
|
I.
Introduction |
Sep
8 |
1. Introduction to Computational Vision |
1.IntroToComputationalVision.nb Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in Neurobiology, 13(2), 1-9. (pdf) |
||
13 |
2. Limits to Vision |
Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25, 819-840. (pdf) |
Barlow, H. B. (1981). Critical Limiting Factors in the Design of the Eye and Visual Cortex. Proc. Roy. Soc. Lond. B, 212, 1-34. (pdf) Baylor, D. A., Lamb, T. D., & Yau, K. W. (1979). Responses of retinal rods to single photons. Journal of Physiology, Lond., 288, 613-634. (pdf) |
||
15 |
3. The Ideal Observer |
|
|||
20 |
4. Ideal observer analysis: Humans vs. ideals | 4.IdealObserverAnalysis.nb Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981). Efficiency of human visual signal discrimination. Science, 214(4516), 93-94. (pdf) |
|||
II. Image
formation, |
22 |
5.Psychophysics: tools & techniques |
|
Farell,
B. & Pelli, D. G. (1999) Psychophysical methods, or how to measure
a threshold and why. In R. H. S. Carpenter & J. G. Robson (Eds.),
Vision Research: A Practical Guide to Mathematica
psychophysics notebook template (GaborSKEDetection.nb) |
|
27 |
6. Bayesian decision theory & perception | 6.BayesDecisionTheory.nb Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 508-510. (pdf) |
#1 Ideal Discriminator (7%) | ||
29 |
7. Limits to spatial resolution, image modeling, introduction to linear systems | 7.ImageModelLinearSystems.nb Campbell, F. W., & Green, D. (1965). Optical and retinal factors affecting visual resolution. Journal of Physiology (Lond.), 181, 576-593. (pdf) |
Williams, D. R. (1986). Seeing through the photoreceptor mosaic. 9(5), 193-197. (pdf) LinearAlgebraReview.nb Image
data files: Fourier128x128.jpeg |
||
III.
Early visual coding |
Oct 4 |
8. Linear systems analysis |
Tutorials: |
||
6 |
9. Spatial filter models of early human vision | Campbell, F. W., & Robson, J. R. (1968). Application of Fourier Analysis to the Visibility of Gratings. Journal of Physiology 197, 551-566. (pdf) De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Res, 22(5), 545-559. Watson, A. B. (1987). Efficiency of a model human image code. J Opt Soc Am A, 4(12), 2401-2417. (pdf) |
|||
11 |
10. Local processing & image analysis |
Albrecht,
D. G., De Valois, R. L., & Thorell, L. G. (1980). Visual cortical
neurons: are bars or gratings the optimal stimuli? Science, 207(4426),
88-90.(pdf) |
Adelson, E. H., & Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In M. S. Landy & J. A. Movshon (Eds.), Computational Models of Visual Processing. Cambridge, MA: The MIT Press: A Bradford Book.(pdf) |
Assignmt #2Convolve.nb(7%) | |
13 |
11. Coding efficiency: Retina |
Meister, M., & Berry, M. J., 2nd. (1999). The neural code of the retina. Neuron, 22(3), 435-450.(pdf)
|
Laughlin, S. (1981). A simple coding procedure enhances a neuron's information capacity. Z Naturforsch [C], 36(9-10), 910-912.(pdf) Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci, 216(1205), 427-459.(pdf) ColorAlpine256x256.jpg |
||
18 |
12. Coding efficiency: Cortex |
12.SpatialCodingEfficiency.nb Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annu Rev Neurosci, 24, 1193-1216.(pdf) |
Laughlin, S. B., de Ruyter van Steveninck, R. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nat Neurosci, 1(1), 36-41.(pdf) |
||
IV.
Intermediate-level vision, integration, grouping |
20 |
13. Edge detection | 13.EdgeDetection.nb (pdf) |
Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci, 198(1130), 1-59. (pdf) |
|
25 |
MID-TERM | MID-TERM Study guide (pdf) |
MID-TERM (16%) | ||
27 |
14. Contrast normalization,Scenes from images |
von der Heydt R (2003) Image parsing mechanisms of the visual cortex. In: The Visual Neurosciences (Werner JS, Chalupa LM, eds.), pp 1139-1150. Cambridge, Mass.: MIT press.(pdf) |
deer.jpg Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neuroscience 20: 6594-6611 |
Assignmt_3Illusions.nb |
|
Nov
1
|
15.Surface geometry, Scene-based generative models | 15.SurfaceGeometryDepth.nb Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian Inference. Annual Review of Psychology, 55, 271-304. (pdf link) |
|||
3 |
16. Shape-from-X | RDS.m, ShowStereo2.m, ImplicitSolids.m Reflectance map: Shape from shading: Horn BKP (1986) Robot Vision. Cambridge MA: MIT Press. Ch 11 (pdf) |
|||
8 |
17. Shape-from-shading, bas-relief, Bayesian estimators | Belhumeur, P. N., Kriegman, D. J., & Yuille, A. (1997). The Bas-Relief Ambiguity. (pdf) |
|||
10 |
18. Motion: optic flow | Horn, B. K. P., & Schunck, B. G. (1981). Determining Optical Flow. Artificial Intelligence, 17, 185-203. (pdf) |
|||
15 |
19. Motion: biological, human perception | 19.MotionHumanPerception.nb Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat Neurosci, 5(6), 598-604.(pdf) |
Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (1996). Computational models of cortical visual processing. Proc Natl Acad Sci U S A, 93(2), 623-627. aperturedemomovie.mov(quicktime) |
#4
(7%) Assignmt4SceneImageModels.nb |
|
17 |
20. Material perception |
Adelson, E. H. (1993). Perceptual organization and the judgment of brightness. Science, 262, 2042-2044 (pdf) |
Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003). Real-world illumination and the perception of surface reflectance properties. J Vis, 3(5), 347-368. (link) Lightness Perception and Lightness Illusions Chapter 24 in M. Gazzaniga, ed., The New Cognitive Neurosciences, 2nd ed.Cambridge, MA: MIT Press, 339-351, 2000.(html) http://www-bcs.mit.edu/persci/high/gallery/checkershadow_illusion.html |
Final project title & paragraph outline (2%) | |
22 |
21. Texture. |
Fang's lecture: Object Representation in Human Visual System (pdf) and Reading from Fang's lecture: Haxby et al. (pdf) |
Heeger DJ and Bergen JR, Pyramid Based Texture Analysis/Synthesis, Computer Graphics Proceedings, p. 229-238, 1995. (pdf). From Fang's lecture: Cohen and Tong (pdf) |
||
24 (Thanks-giving, the 25th) |
22.Science writing |
Gopen & Swan, 1990 (pdf)
|
|||
V.
High-level vision |
29 |
23.Perceptual integration, cue integration, cooperative computation | 23.PerceptualIntegration.nb Hillis, J. M., Ernst, M. O., Banks, M. S., & Landy, M. S. (2002). Combining sensory information: mandatory fusion within, but not between, senses. Science, 298(5598), 1627-1630.(pdf)
|
McDermott, J., Weiss, Y., & Adelson, E. H. (2001). Beyond junctions: nonlocal form constraints on motion interpretation. Perception, 30(8), 905-923. http://www.perceptionweb.com/perc0801/square.html |
|
Dec 1 |
24. Object recognition
|
Liu,
Z., Knill, D. C., & Kersten, D. (1995). Object Classification
for Human and Ideal Observers. Vision Research, 35(4), 549-568. (pdf) |
Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cerebral cortex 13:90-99.(pdf) | NOTE
EXTENSION: Complete Draft of Final Project (5%: 2 pts for completing Introduction, 2 pts for completing Methods, 1 pt for completing Discussion) |
|
6 |
25. Object perception & cortex | 25.ObjectRecBackground.nb Supplement: LearningCamouflage (pdf) Grill-Spector, K. (2003). The neural basis of object perception. Curr Opin Neurobiol, 13(2), 159-166.(pdf) (See too: Fang's Nov 22 lecture, (pdf)) Reading from
Fang's Nov. 22 lecture: Haxby et al. (pdf) |
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci, 2(1), 79-87. (pdf) Bullier, J. (2001). Integrated model of visual processing. Brain Res Brain Res Rev, 36(2-3), 96-107. (pdf) Cohen and Tong (pdf) (From Fang's lecture) Brady MJ, Kersten D (2003) Bootstrapped learning of novel objects. J Vis 3:413-422. http://journalofvision.org/3/6/2/ |
||
8 |
26. Vision for action: attention, eye movements, heading. Science writing 2. | Longuet-Higgins,
H. C., & Prazdny, K. (1980). The Interpretation of a Moving Retinal
Image. Proceedings of the Royal Society of London B, 208, 385-397. (pdf) |
(Drafts returned) | ||
13 | 27. Learning,
concepts & categories, Theories of cortex |
Tomaso Poggio and Christian R. Shelton (1999). "Machine Learning, Machine Vision, and the Brain." AI Magazine, 20(3), 37-55.(pdf) |
Top-Down Control of
Visual Attention in Object Detection. Aude Oliva, Antonio Torralba,
Monica S. Castelhano and John M. Henderson. (2003), International
Conference on Image Processing (ICIP). Vol. I, pages 253-256. September
14-17, in Barcelona, Spain (pdf) |
||
15 | FINAL EXAM | Final Study Guide (pdf) | FINAL EXAM (16%) | ||
19 | NEW: Extended deadline to Dec 21 | ||||
21 | Final Revised Draft of Project due (33%) |
Goal: This course integrates the behavioral, neural and computational principles of perception. Students often find the interdisciplinary integration to be the most challenging aspect of the course. Through writing, you will learn to synthesize results from diverse and typically isolated disciplines. By writing about your project work, you will learn to think through the broader implications of their projects, and to effectively communicate the rationale and results of your computer projects in words. You will do a final page research report in which you will describe, in the form of a scientific paper, the results of an original computer simulation.
Completing the final paper involves 3 steps:
Your final project will involve: 1) a computer simulation and; 2) a 2000-3000 word final paper describing your simulation. For your computer project, you will do one of the following: 1) Write a program to simulate a model from the computer vision literature ; 2) Design and program a method for solving some problem in perception. 3) Design and program a psychophysical experiment to study an aspect of human visual perception. The results of your final project should be written up in the form of a short scientific paper or Mathematica Notebook, describing the motivation, methods, results, and interpretation.
If you choose to write your program in Mathematica, your paper and program can be combined can be formated as a Mathematica notebook. See: Books and Tutorials on Notebooks.
Your paper will be critiqued and returned for you to revise and resubmit in final form. You should write for an audience consisting of your class peers.
You may elect to have your final paper published in the course's web-based electronic journal.