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‡ Initialize standard library files:

<<Graphics`Graphics`
<<Statistics`DiscreteDistributions`
<<Statistics`ContinuousDistributions`
Off[General::spell1];

Goals

Last time

‡ Ideal Observer Analysis: Essential idea

Ideal observer

Model the data (image) generation process

Define the inference task

Determine optimal performance

Compare human performance to the ideal

Ideal normalizes for information available

Explain discrepancies in terms of:

functional adaptation

mechanism



Today

Finish 2AFC dot demo

Review some probability and statistics

Pattern detection: The signal-known-exactly ideal

Demo of 2AFC for pattern detection in noise

Assignment 1

What does the eye see best?

Make the question precise by asking: 

Make the question precise by asking: 

For what patterns does the human visual system have the highest detection efficiencies relative to an ideal observer?

‡ Faces, or a particular face?

‡ Animals, or particularly dangerous ones?
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‡ Or something simple, like a spot

‡ Or some pattern motivated by neurophysiology? E.g. the kinds of spatial patterns that single neurons in 

the primary visual cortex prefer ...

Gabor patterns

‡ Basis set: Cartesian representation of Gabor functions:

ndist=NormalDistribution[0,1];

cgabor[x_,y_, fx_, fy_,sx_,sy_] := 
Exp[-((x/sx)^2 +  (y/sy)^2)] Cos[2 Pi(fx x + fy y)];
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‡ Various  frequencies , vertical orientations,  and  fixed width

vtheta = Table[0, {i1,4}];
vf = {2,4};
hf = {0.0,0.0,0.0};
xwidth = {0.15,4};
ywidth = {4,4};
npoints = 128;
signalcontrast=0.15;
noisecontrast=0.2;

lr = -1; ur = 1; step = Hur - lrL ê Hnpoints - 1L;
signal =
Table@signalcontrast cgabor@y, x, vf@@1DD, hf@@1DD, xwidth@@1DD,

ywidth@@1DDD, 8x, lr, ur, step<, 8y, lr, ur, step<D;
noise = noisecontrast Table@Random@ndistD, 8npoints<, 8npoints<D;

‡ Signal, noise, signal + noise

spn = ListDensityPlot@signal, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<D;

spn = ListDensityPlot@noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<D;
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spn = ListDensityPlot@signal + noise, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<D;

Probabilty Overview
For terminology, a fairly comprehensive outline, and overview, see notebook: ProbabilityOverview.nb in the syllabus web 
page.

For the section below, we'll use the properties of independence.

‡ Expectation & variance

Analogous to center of mass:

Definition of expectation or average:

Average@XD = Xê = E@XD = S x@iD p@x@iDD ~ ‚
i=1

N

xi ê N
m = E@XD = ‡ x pHxL dx

Some rules:

E[X+Y]=E[X]+E[Y]

E[aX]=aE[X]

E[X+a]=a+E[X]

Definition of variance:

s2 = Var[X] = E[[X-m]^2] = ⁄ j=1
N HHpHxH jLLL HxH jL - mLL2 = ⁄ j=1

N pj Hxj - mLL2
Var@XD = ‡ Hx - mL2 pHxL dx ~ ‚

i=1

N Hxi - m L2 ê N

Standard deviation:

s =
è!!!!!!!!!!!!!!!!Var@XD

5.Psychophysics.nb 5



Some rules:

Var@XD = E@X2D - E@XD2
Var@aXD = a2 Var@XD
‡ Statistics for independent random variables

Independence means that knowledge of one event doesn't change the probability of another event. 

p(X)=p(X|Y)

p(X,Y)=p(X)p(Y)

If p(X,Y)=p(X)p(Y), then

E@X YD = E@XD E@YD HuncorrelatedL
Var@X + YD = Var@XD + Var@YD

Ideal pattern detector for a signal which is exactly known ("SKE" ideal)
In this notebook we will study an ideal detector called the signal-known-exactly ideal (SKE).  This detector has a built-in 
template that matches the signal that it is looking for. The signal is embedded in "white gaussian noise".   "white" means the 
pixels are not correlated with each other--intuitively this means that you can't reliably predict what one  pixel's value is from 
any of the others. Assignment 1 simulates the behavior of this ideal. In the absence of any internal noise, this ideal detector 
behaves as one would expect a linear neuron to behave when a target signal pattern exactly matches its synaptic weight 
pattern. There are some neurons in the the primary cortex of the visual system called "simple cells". These cells can be 
modeled as ideal detectors for the patterns that match their receptive fields. In actual practice, neurons are not noise-free, 
and not perfectly linear.

Calculating the Pattern Ideal's d' based on signal-to-noise ratio

‡ Overview

We are going to do two things:

1. Show that a simple decision variable for detecting a known fixed pattern in white gaussian noise is the dot product of the 
observation image with the known signal image.

2. Show that d' is given by:
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‡ Cross correlation produces an ideal decision variable: Proof

By definition

d'=(m2 - m1)/s

m2 - m1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s

where u2 is the mean of the decision variable, r,  under the signal hypothesis, and u1 is the mean under the noise-only 
hypothesis. But what is the decision variable? Starting from the maximum a posteriori rule, we saw that basing decisions on 
the likelihood ratio is ideal, in particular in the sense of minimizing the probability of error. So the likelihood ratio is a 
decision variable. But it isn't the only one, because any monotonic function is still optimal. So our goal is to pick a decision 
variable which is simple, intuitive, and easy to compute. But first, we need an expression for the likelihood ratio:

(1)
p Hx » signal plus noiseL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
p Hx » noise onlyL

where x is the vector representing the image measurements actually observed

x = s + n, under signal plus gaussian noise condition

x = n, under gaussian noise only condition

Consider just one pixel of intensity x. Under the signal plus noise condition, the values of x fluctuate about the average 
signal intensity s with a Gaussian distribution (gp[ ]) with mean s and standard deviation s.

So under the signal plus noise condition, the likelihood p[x|s] is the gp[x-s; s]:

gp[x_,s_,s_]:= (1/(s*Sqrt[2 Pi])) Exp[-(x-s)^2/(2 s^2)]

gp[x,s,s]

‰
- Hx-sL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

Again, consider just one pixel of intensity x. Under the noise only condition, the values of x fluctuate about the average 
intensity corresponding to the mean of the noise, which we assume is zero. 

So under the  noise only condition, the likelihood p[x|n] is:

gp[x,0,s]

‰
- x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

But we actually have a whole pattern of values of x, which make up an image vector x. So consider a pattern of image 
intensities represented now by a vector x = {x[1],x[2],...x[N]}. Let the mean values of each pixel under the signal plus noise 
condition be given by vector s = {s[1],s[2],...,s[N]}. The joint probability of an image observation x, under the signal 
hypothesis is:
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But we actually have a whole pattern of values of x, which make up an image vector x. So consider a pattern of image 
intensities represented now by a vector x = {x[1],x[2],...x[N]}. Let the mean values of each pixel under the signal plus noise 
condition be given by vector s = {s[1],s[2],...,s[N]}. The joint probability of an image observation x, under the signal 
hypothesis is:

Product[gp[x[i],s[i],s],{i,1,N}]

Â
i=1

N
‰

- HxHiL-sHiLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

This is because we are assuming independence (whether we are right or not depends on the problem). But independence 
between pixels means we can multiply the individual probabilities to get the global joint image probability. (See Probability-
Overview.nb)

The joint probability of an image observation x, under the noise only hypothesis is:

Product[gp[x[i],0,s],{i,1,N}]

Â
i=1

N
‰

- xHiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

Now we have what we need for the likelihood ratio:

Product@gp@x@iD, s@iD, sD, 8i, 1, N<D ê Product@gp@x@iD, 0, sD, 8i, 1, N<D
Â

i=1

N
‰

- HxHiL-sHiLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÂ

i=1

N
‰

- xHiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

So at this point, we could just stop and use this product to make ideal decisions. E.g. if the product is bigger than 1, choose 
the signal hypothesis, and if less than 1 choose the noise hypothesis. But we can get a much simpler rule with a little more 
work. Because any monotonic function, f() of the likelihood ratio would give the same performance (i.e. choose signal if 
f(likelihood ratio)>f(1), and noise otherwise), let's try one--the natural logarithm will turn the product into a sum:
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LogA ¤i=1
N gp@x@iD, s@iD, sD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ¤i=1
N gp@x@iD, 0, sD E

log

i
k
jjjjjjjjjjjjjjjjjjj
Â

i=1

N
‰

- HxHiL-sHiLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÂ

i=1

N
‰

- xHiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

y
{
zzzzzzzzzzzzzzzzzzz

which is equal to:

(2)Log
i
kjjjjjjjjjjÂi=1

N
‰

- HxHiL-sHiLL2 -xHiL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

y
{zzzzzzzzzz

which is monotonic with:

(3)LogA‰
i=1

N

‰
2 xHiL sHiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2 E
(4)H1 ê s2 L ‚

i=1

N

xHiL sHiL
which is monotonic with:

Sum[x[i] s[i],{i,1,N}]

‚
i=1

N

sHiL xHiL
(5)r = ‚

i=1

N

xHiL sHiL
In other words, we've proven that the dot product, r, (or cross-correlation or matched filter) provides a decision variable 
which is optimal--in the sense that if we use the rule, the probability of error will be least. Now, let's calculate d'.

‡ Derive formula for d'

To get d', we need to know the means and standard deviation for the decision variable, r. 

First, suppose the switch is set for signal trials. What is the average and standard deviation of r?

(6)

m2 = Average@rD =

AverageA‚
i=1

N

xHiL sHiLE = ‚
i=1

N

Average@xHiLD sHiL = ‚
i=1

N

sHiL sHiL = ‚
i=1

N

sHiL2
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(7)m2 = ‚
i=1

N

sHiL2
Because x(i)=s(i)+n(i), Average[x(i)]=s(i).

And the variance is:

(8)Var
ikjjjjj‚i=1

N

xHiL sHiLy{zzzzz = ‚
i=1

N

sHiL2  Var@xHiLD = s2  ‚
i=1

N

sHiL2
(Because Var[Y + Z] = Var[Y] + Var[Z], but one is a constant, so because Var[constant + n]=Var[n].

Also, recall that Var[c Y] = c^2 Var[Y])

Now, suppose the switch is set for noise only trials. The average is:

(9)

m1 =

Average@rD = AverageA‚
i=1

N

xHiL sHiLE = ‚
i=1

N

Average@xHiLD sHiL = ‚
i=1

N

0 sHiL = 0

The variance is the same as for the signal case:

(10)Var
ikjjjjj‚i=1

N

xHiL sHiLy{zzzzz = ‚
i=1

N

sHiL2  Var@xHiLD = s2  ‚
i=1

N

sHiL2
So d' is:

Syntax::sntxi: Incomplete expression; more input is needed. More…

Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])]

⁄i=1
N sHiL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##########################s2 ⁄i=1
N sHiL2

FullSimplify[Sum[s[i]^2, {i, 1, N}]/Sqrt[(s^2 Sum[s[i]^2,{i,1,N}])]]

"##########################s2 ⁄i=1
N sHiL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2

Or simplifying further (Mathematica didn't take it the final step):

(11)d ' =
"####################⁄i=1

N  sHiL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s
=

è!!!!!!s.s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s
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Calculating the Pattern Ideal's d' for a two-alternative forced-choice experiment from a 
z-score of the proportion correct.

Recall that we had an expression for d' for a yes/no experiment in which we measured hit and false alarm rates. 

For a 2AFC experiment, the observer gets two images to compare. One has the signal plus noise, and the other just noise. 
But the observer doesn't know which one is which. An ideal strategy is to compute the cross-correlation decision variable 
for each image, and pick the image which gives the larger cross-correlation. This strategy will result in a single number, the 
proportion correct, Pc. 

d' for a 2AFC task is given by the formula:

‡ Z-score. You can use the inverse of a standard mathematical function called Erf[] to get Z from a measured 

P.  (Under vesion 3.0, you have to read in a package to access its inverse 

(<<Statistics`InverseStatisticalFunctions`).

z[p_] := Sqrt[2] InverseErf[1 - 2 p];

where Z(*) is the z-score for Pc , the proportion correct. (See Green and Swets or the supplementary class notes on SDT). 

dprime[x_] := N[-Sqrt[2] z[x]]

Demo of 2AFC for pattern detection
See GaborSKEDetection.nb.
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Next time

Assignment 1 due

See Assignmt_ 1 IdealDis.nb

High-level vision as Bayesian decision theory

‡ Introduction to higher-level perceptual decisions as inference

‡ Bayesian decision theory

‡ Various types of inference Tasks: synthesis, inference (detection, classification, estimation), learning

Exercises

Statistical Sampling

Earlier we used statistical sampling or "random number generation". We have done simple "Monte Carlo" simulations to 
make a histogram for detected photons. Here, you have a chance to get a closer look at the process. 

Most standard programming languages come with standard subroutines for doing pseudo-random number generation. 
Unlike the Poisson or Gaussian distribution, these numbers are uniformly distributed--that is, the probability of being a 
certain value is the same over the sampling range. Mathematica  comes with a standard function, Random[] that enables us 
to generate random numbers that are uniform, Poisson, Normal. (There are some others in the packages too, like the Chi-
SquareDistribution).

We did a "Monte Carlo" simulation of a photon absorption experiment. To do this,  we needed to generate samples from a 
Poisson distribution, rather than a uniform distribution. Mathematica enables us to do this with the function specification 
Random[pdist]. 
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??Random

Random@ D gives a uniformly distributed pseudorandom Real in the range
0 to 1. Random@type, rangeD gives a pseudorandom number of the
specified type, lying in the specified range. Possible types
are: Integer, Real and Complex. The default range is 0 to 1. You
can give the range 8min, max< explicitly; a range specification
of max is equivalent to 80, max<. Random@distributionD gives a
random number with the specified statistical distribution. More…

Attributes@RandomD = 8Protected<
‡ Exercise--make your own random number generator for non-gaussian sampling

If you wanted to write your own routine to sample from a non-uniform distribution, you could do it by first generating a 
table with the cumulative distribution function (whose probability values increase monotonically from zero to one), and then 
using Random[] to select a probabililty between zero and one, and then "reading across and down" your cumulative plot, to 
read off the value of the random variable--this is your sample. Try it for the Poisson distribution. Compare it with Mathemati-
ca's add-in routines.

In the last lecture, we defined a function to generate ntimes samples, and then make a list of a 1000 values. Then do the 
sampling experiment to get the list. A thousand values can take a while to generate, so when you try this line below, you 
may want to start with 100 samples or so. Count up how many times the result was 20 or less. To do this, we will use two 
built-in functions: Count[], and Thread[]. You can obtain their definitions using the ?? query.

sample[ntimes_] := 
Table[Random[pdist],{ntimes}];
z = sample[1000];
Count[Thread[z<=20],True]

567

So far, are we in good agreement with theory?--about half (500/100) of the samples should be less than 20. We can make a 
better comparison by comparing the plots of the histogram from the sampling experiment with the theoretical prediction. 
Let's make a table with that summarizes the frequency.

domain = Range[0,50];
Freq = Map[Count[z,#]&,domain];

Now plot up the results. Note that we normalize the Freq values by the number values in z using Length[].
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theoreticalz = Table[PDF[pdist,n], {n,0,30}];
theoreticalg = ListPlot[theoreticalz,

PlotJoined->True, PlotStyle->{RGBColor[0,0,1]},
DisplayFunction->Identity];

simulatedg = ListPlot[N[Freq/Length[z]],
PlotJoined->True, PlotStyle->{RGBColor[1,0,0]},
DisplayFunction->Identity];
Show[theoreticalg,simulatedg,

DisplayFunction->$DisplayFunction];

10 20 30 40 50

0.02

0.04

0.06

0.08

0.1

As you can see (and saw in an earlier lecture),  the computer simulation matches fairly closely what theory predicts. The 
next exercise shows that the mean and variance are in good agreement, that is if you've sampled enough times.

Exercise: Use the functions Apply[Plus,list] and Length[list] to define a function that calculates the mean of a list.  
Find the mean of z. Then define a function to calculate the variance of z. Compare the mean and variance of the above 
Poisson sampling experiment to the theoretical prediction.

‡ Extra notes

By the way, you can look at the two distributions in table form. Let us first get the cumulative frequency using the Fold-
List[] function,

CumFreq = FoldList[Plus, 0, Freq]//Rest;

and then outputing the data in "MatrixForm":

Transpose[{domain,Freq, CumFreq}]//MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

6 1 1
7 1 2
8 1 3
9 3 6

10 4 10
11 11 21
12 23 44
13 21 65
14 43 108
15 46 154
16 68 222
17 86 308
18 83 391
19 77 468
20 99 567
21 110 677
22 77 754
23 54 808
24 61 869
25 33 902
26 39 941
27 22 963
28 17 980
29 8 988
30 4 992
31 2 994
32 0 994
33 3 997
34 1 998
35 1 999
36 0 999
37 0 999
38 0 999
39 0 999
40 1 1000
41 0 1000
42 0 1000
43 0 1000
44 0 1000
45 0 1000
46 0 1000
47 0 1000
48 0 1000
49 0 1000
50 0 1000

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
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Exercise: Calculate the information capacity of the eye

Consider an m x n pixel image patch. Is there a quantum limit to the number of light levels that can be represented in a 
resolution cell? (The size of a resolution cell is determined by the modulation transfer function of the optical device under 
consideration, which in this case would be the eye. We look later at how to estimate the spatial resolution of an imaging 
system). 

m

n resolution cell
capable of encoding

L levels

Let SN be the maximum number of photons that land in a resolution cell. One can't discriminate this level from any other 
with an infinitely small degree of precision. Requiring a sensitivity of d', determines the next dimmest light level:

SN-1 = SN - d 'è!!!!!!SN

This effectively quantizes the dynamic range of a resolution cell. Write a small iterative program to count the number of 
levels down to S1 = zero. Say the number of levels is L, or LogsL = l  bits.  Of course, one has to decide a priori what is a 
suitable discrimination level. But once done, the information capacity can be estimated by lmn bits.
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