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 SPECIAL COLLECTION 

 Controversial Issues in 
Visual Cortex Mapping 

      Introduction 

 Our understanding of the human visual system—from the delineation 
of regions containing different spatial maps of the visual world to 
our understanding of just how distributed information processing 
is—would be far behind current levels without functional magnetic 
resonance imaging (fMRI). In spite of the fact that fMRI provides 
only an indirect measure of neural responses (hemodynamic 
measures like blood fl ow and oxygenation are proxies for the neural 
signals we want to study), fMRI experiments have revealed much 
about the mesoscopic (intra-area organizations such as retinotopy) 
and macroscopic (delineation of brain regions) structure. 

 One of the most exciting contributions of fMRI to our under-
standing of primary visual cortex (V1) is our awareness that responses 
in V1 are modulated by information encoded outside of V1. That is, 

to say: V1 fMRI responses are strongly modulated by global scene 
or behavioral context (visual information) that cannot possibly be 
explained by the local neuron response properties (i.e., not encoded 
locally). A caveat about what is meant by “strong” modulation is 
appropriate here. The signal-to-noise ratio (SNR) of fMRI studies, 
in general, is not strong—we are generally looking for  ∼ 1% signal 
changes in a signal that has noise processes with standard devia-
tions of 1% or more. So our SNR is about 1:1. A strong modula-
tion, due to attention or scene structure, might be a doubling of 
the signal. However, given the fundamentally low SNR of fMRI, 
we still require an average of many trials to discover these strong 
modulations. 

 There is some controversy over whether this strong modulation 
of the fMRI signal actually represents modulation of neural 
responses. It is, after all, a much larger modulation than is typically 
seen in the fi ring rates of neurons (Yoshor et al.,  2007 ). Perhaps, it 
refl ects instead some alteration of local energetics or the glial sig-
nal (Iadecola & Nedergaard,  2007 ), rather than neural fi ring rates? 
For an excellent balanced discussion of this, see the discussion of 
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 Abstract 

 Inferring neural responses from functional magnetic resonance imaging (fMRI) data is challenging. Even if we take 
advantage of high-fi eld systems to acquire data with submillimeter resolution, we are still acquiring data in which a 
single datum summarizes the responses of tens of thousands of neurons. Excitation and inhibition, spikes and sub-
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are mixed together in one signal. With  a priori  knowledge of the underlying neural population responses, careful 
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modulated, and our experiments can reveal those tuning functions. However, because we want to be able to use fMRI 
to discover new kinds of tuning functions and selectivity, we cannot limit ourselves to experiments in which we already 
know what we are looking for. Broadly speaking, analyses that rely on classifi cation of responses that are distributed 
across the local neural population [multi-voxel pattern analyses (MVPA)] offer the ability to discover new kinds of 
information representation and selectivities in neural subpopulations. There is, however, no way to determine how the 
information discovered with MVPA or other analyses is related to the underlying neuronal tuning functions. Therefore, 
we must continue to rely on behavioral, computational, and animal models to develop theories of information represen-
tation in mid-tier visual cortical areas. Once encoding models exist, fMRI can be powerful for testing these  a priori  
models of information representation. As an aide in developing these models, an important contribution that fMRI can 
make to our understanding of mid-tier visual areas is derived from connectivity analyses and experiments that study 
information sharing between visual areas. This ability to quantify localized population average responses throughout 
the brain is the strength we can best leverage to discover new properties of local and long-range neural networks.   

 Keywords :    fMRI  ,   Connectivity  ,   Visual hierarchy     

   Address correspondence to: Cheryl A. Olman, Associate Professor, 
Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 
East River Road, Minneapolis, MN 55455. E-mail:  caolman@umn.edu   



Olman2

Maier et al ( 2008 ). However, a reasonable view of these reports 
of V1 modulation by scene disambiguation (Hegde & Kersten, 
 2010 ), object information (Williams et al.,  2008 ), or scene coherence 
(Mannion et al.,  2013 ), for example, is that interactions with other 
cortical [or subcortical (Sherman,  2007 )] regions are modifying, if 
not fi ring rates, then at least some aspect the way in which different 
V1-encoded visual features are represented in V1. This very inte-
grative view of V1 as a node in a distributed network makes partic-
ular sense when one considers that, perhaps, 10% of the inputs to 
V1 come from “below” V1 (i.e., subcortical sources) (Logothetis, 
 2008 ), while the vast majority come from other cortical regions in 
the brain that rank “higher” in the visual network. 

 It is amazing that fMRI can tell us so much about what is going 
on in the human visual system, yet at the same time reveal so little 
about what we want to know: how does the human visual system 
encode the visual information in a scene? Visual information is used 
here as a very broad term—anything an observer can learn from a 
scene. The term encode, however, is intended to have a narrow inter-
pretation. Information encoding is used here to refer specifi cally to 
tuning functions, or response selectivity, of neurons in a localized 
neural population. In V1, information that meets the defi nition of 
being encoded in V1 would be the orientation of a luminance con-
trast edge that subtends a degree or two of visual angle, or the color 
contrast of that edge, or perhaps the direction it is drifting. 

 The assumption for the rest of this article is that our basic research 
goals are to understand both (1) how a localized neural population 
encodes information and (2) how that information encoding is mod-
ulated by information from other nodes in the visual hierarchy. 
Increasing sophistication in analysis techniques and experiments 
makes us excited about accessing large-scale information contained 
in local neural activity. However, the “Caution” section will identify 
some concerns about the limitations of quantitative inference of neu-
ral response properties from fMRI data. “The particular challenges 
encountered in hV4” section will take hV4 as an opportunity to con-
sider the strong limitations we have in using fMRI to discover—
 de novo —how mid-tier visual areas represent visual information. 
Finally, the “So what is fMRI good for?” section will argue that 
fMRI is particularly well suited for addressing the second of the two 
problems above—information shared between visual areas.   

 Caution  

 Is the term “neural activity” useful? 

 Not long ago, there was much discussion in the literature about 
energy budgets and neuro-hemodynamic coupling (e.g., Lennie, 
 2003 ). A driving concern was that the fMRI response might be 
driven by some aspect of physiology or metabolism that was not 
correlated with the fi ring rates of the neurons representing the infor-
mation we want to discover. However, a large body of literature 
supports the idea that fMRI does indeed refl ect neural responses, 
rather than temporally or spatially dissociated characteristics 
like hemodynamic auto-regulation or glial energy consumption 
[although the jury is still out regarding the question of whether glia 
are part of the computational network (Schummers et al.,  2008 )]. 
In fact, the discovery of pericytes (Hall et al.,  2014 ) and the corre-
sponding ability of the vasculature to regulate on a very fi ne spatial 
scale, as well as the proof-of-principle visualization of ocular dom-
inance columns (Cheng et al.,  2001 ; Yacoub et al.,  2007 ) and even 
orientation columns (Yacoub et al.,  2008 ), indicates that the fMRI 
signal provides a very spatially accurate map of neural activity with 
accuracy that can be better than 1 mm if we use specialized imaging 

techniques. With standard gradient-echo echo-planar imaging (EPI), 
our resolution is in the 2–5 mm range (Olman & Yacoub,  2011 ). 

 The danger of the term “neural activity” is that it can be used 
to imply homogeneity in a heterogeneous and inadequately 
sampled neural population. Neuron density is on the order of 
10,000 neurons/mm 3  throughout cortex, as high as 40,000 in V1, less 
in other areas. So even with submillimeter resolution (e.g., 0.8 mm, 
isotropic, or about 0.5 mm 3 ), a voxel (fMRI resolution element) 
contains 5000–20,000 neurons. Blurring is of course present in the 
data, so a single fMRI datum refl ects at best the temporally blurred, 
spatially aggregated responses of 10,000–50,000 neurons. There is 
redundancy in the population, of course, but in that population—
for V1 at least—a neuroscience graduate student could easily name 
about 30 different types of neurons (and know that she/he is forget-
ting another 30 types): several different kinds of inhibitory inter-
neurons in every layer, excitatory interneurons in the input layers, 
pyramidal cells in deep and superfi cial layers, and a complete 
collection of each of these types of cells for every feature-tuned 
column. In V1, the most obvious feature is orientation; those columns 
appear to be about 200 microns in diameter in humans, so there are 
at least four in the smallest voxel, and typically many more. Many 
different features are mapped across the cortical surface (Swindale, 
 1992 ), and for each, there is a small army of excitatory and inhibi-
tory neurons with different connection patterns and roles in shaping 
the population's selectivity to that feature. When we see a signal 
increase or decrease in a fMRI voxel, how do we know which neu-
rons have changed their fi ring rate? 

 In defense of the term “neural activity” stands the fact that its 
common interpretation is “average fi ring rate in the local popula-
tion,” and this kind of measurement does have inherent value. 
Other techniques for measuring  in vivo  neuronal responses tend to 
biased toward large neurons: electroencephalography (EEG) and 
magnetoencephalography (MEG) will detect fi elds generated by 
ionic currents driven by large pyramidal neurons at particular ori-
entations (Darvas et al,  2004 ), and even invasive electrophysio-
logical recordings are most likely to sample larger neurons (Olshausen 
& Field,  2004 ). Hemodynamic responses, on the other hand, will 
refl ect activity in a broader cross-section of the neuronal population, 
which may be why fMRI refl ects modulatory signals with sur-
prising strength (Maier et al.,  2008 ). 

 Further support for the value of population average mapping 
comes from discoveries made with optical imaging [e.g., (Hubener 
et al.,  1997 )]. Optical imaging is also a hemodynamic measurement 
that pools responses from neurons with many different encoding 
functions, yet key aspects of cortical organization were discovered 
with optical imaging. While the fact that neurons with similar 
response properties cluster in columns that span the cortical depth 
was discovered with electrophysiology (Mountcastle,  1997 ), but 
elucidation of the mesoscopic organization of these columns, into 
orientation pinwheels, for example (Bonhoeffer & Grinvald, 
 1993 ), required a technique that could uniformly sample the popu-
lation average over a large spatial scale. 

 Still, it is not an exaggeration to say that the term “neural activity” 
is about as quantitative as the term “public opinion.” Because of the 
spatial scale and diversity of the neural population, inferring “neu-
ral activity” from the response in a fMRI voxel is in many ways 
like asking the mayor of a small town about a politically charged 
issue and thinking you have adequately polled the citizens. From 
one perspective, this is a perfectly valid approach: for a given 
region of cortex, we cannot possibly sample every response, so we 
might be happy with an estimate of the average response (or a 
winner-take-all estimate of the majority vote). However, from the 
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perspective of understanding information representations in the 
brain, this is exactly the wrong approach. 

 A recent article by Brouwer and Heeger ( 2011 ) studying 
cross-orientation suppression showed us one way to circumvent 
this diffi culty. One beauty of cross-orientation suppression is that 
it calibrates the population response to simultaneously encode 
total contrast as well as contrast at each of the contributing orien-
tations (McDonald et al.,  2012 ). This, however, means that the 
population average response (the fMRI signal) will be the same 
whether a high-contrast vertical grating, a high-contrast hori-
zontal grating, or a high-contrast mixture of vertical and hori-
zontal is presented to the subject. That is, average population 
response is the same in spite of very different response profi les in 
the sub-populations of neurons. Brouwer and Heeger took advan-
tage of the fact that—for whatever reason—each fMRI voxel in 
V1 has a slight orientation bias (Kamitani & Tong,  2005 ; Sun et al., 
 2013 ). Using these biased voxels as indicators of the underlying 
neural subpopulations, they were able to estimate subpopulation 
responses that matched behavior and single-unit electrophysi-
ology. His study shows how crucial (and feasible) it is for us to 
continue to develop tools what will reveal tuning functions in 
subpopulations of neurons, rather than use fMRI as a measure of 
locally averaged neural activity. This article also exemplifi es 
how strongly fMRI studies must rely on modeling, behavioral 
measures, and single-unit recordings; fMRI data cannot be inter-
preted in isolation.   

 What does it mean to discover information in a decoding analysis? 

 While the previous analysis showed that subpopulation responses 
were indeed accessible behind a bland population response, there is 
also an important mirror image caveat: the information revealed by 
a decoding analysis might be refl ected or available, but not actually 
encoded, in a given cortical region. Trivially, we can consider the 
example of decoding in V1. Many articles have shown that multi-
voxel pattern analyses (MVPA) can reveal sensitivity to a broad 
range of global scene information in the V1 population response. 
None of these authors, however, is arguing that this high-level 
information is encoded in V1. Instead, we are fascinated to discover 
the strength with which it is refl ected (presumably  via  long-range 
connections) in the V1 fMRI signal. So this fi rst caveat about inter-
preting the results of decoding analyses is that the information 
refl ected in a given cortical region was quite likely encoded in a 
different cortical area. 

 It is also easy to envision situations in which information is 
encoded locally but not along the dimensions detected by the 
classifi cation analysis. Davis et al. ( 2014 ) provides a compelling 
example. The authors envision an experiment studying animal 
perception and a neural population that contains two subpopula-
tions: one that responds to the size of an animal and one that 
responds to the aggressiveness (“predacity”) of the animal. Taken 
together, size and predacity predict scariness. A cow is large but 
not aggressive; a wolverine is relatively small but worth going out 
of your way to avoid. A linear classifi er seeking to decode this 
neural population's response to the pictures of these animals (in a 
subject who has knowledge of their behavior) would discover that 
this region of cortex encodes scariness. However, that is not actu-
ally the information being encoded. Size and predacity are the 
features encoded locally; scariness is a derivative concept. 
Discovering the representation of scariness in this neural popula-
tion does not help us understand the local neural tuning functions 
or information encoding. 

 The conclusion of this argument is not that we should stop 
using MVPA for studying visual information representations in 
the brain. How else are we going to discover representations 
that have not yet occurred to us, except by using the technique we 
have that is most sensitive to information contained in distributed 
neural populations and robust to between-subject sources of noise 
(Davis et al.,  2014 )? The key concern is that we should remain 
cautions about taking the leap from “information is available here” 
to “information is computed here.” Additionally, as discussed below: 
given the number of neural responses confounded in very voxel, we 
cannot claim that fMRI can access the actual neural tuning func-
tions without confi rmation by behavior, computational, and where 
appropriate, animal models.   

 Encoding models 

 The need to rely on multiple sources of information to interpret 
fMRI (or any other neuronal or imaging) data is refl ected in a recent 
growth of interest in encoding models. Encoding models represent 
an approach to data analysis similar to that previously discussed in 
Brouwer and Heeger ( 2011 ):  a priori  knowledge of neural tuning 
functions is used to build parameterized models of neural subpopu-
lation responses, and by fi tting these models to fMRI data, subpopu-
lation response parameters are estimated in order to explain the 
behavior of the fMRI data. Recent prime examples have been pro-
vided for the encoding of natural images (Naselaris et al.,  2009 ; 
Nishimoto et al.,  2011 ) and semantic information (Cukur et al., 
 2013 ) throughout the visual hierarchy. Population receptive fi eld 
estimation techniques (Dumoulin & Wandell,  2008 ) also have their 
basis in encoding models and are showing good promise for revealing 
the mesoscopic organization of mid-tier visual areas, where feature 
selectivity is complex and checkerboards have little utility. 

 Encoding models have their own set of limitations, of course. 
A signifi cant one is the number of parameters that need to be 
used to model the diversity of tuning functions that will contribute 
to each voxel’s or region's fMRI response. The V1 model used 
in the work (Kay et al.,  2008 ), for example, needed more than 
1000 parameters to capture all possible spatial positions, spatial 
frequencies, and orientations. It takes a lot of data to constrain 
that many parameters! 

 Another limitation of encoding models is that, in order to be 
fi t to the fMRI signal, they need to account (or at least allow) for 
modulation by long-range connections. Even with a very simple 
encoding model (orientation-dependent surround suppression in 
V1), my laboratory has struggled for some time now with a 
fi nding we published in 2010 (Schumacher & Olman,  2010 ): the 
(beautifully) localized fMRI response decreased, rather than 
increased, as we increased the contrast of Gabor elements when 
they were fl anked by parallel elements. Five experiments later, 
we are on the verge of publishing “the rest of the story”: the V1 
fMRI signal is composed of an attention-modulated mixture of 
fi rst-order and second-order contrast representations. The crux 
move is realizing that in even very simple tasks, perception and 
behavioral state shape even very low-level fMRI responses. 

 At this point, it is worth stopping to consider that this funda-
mental limitation—the mixture of signals—is not unique to fMRI. 
All measurements of neural activity in the intact brain of a 
behaving animal suffer from the same limitation: when a neuron, 
or a signal refl ecting neuronal responses, shows selectivity to a par-
ticular bit of information, it cannot be unambiguously determined 
whether it is local or long-range neural networks that are shaping 
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that selectivity. In EEG, and to a lesser degree in MEG, the location 
of the sensors with respect to the neuronal populations keeps this 
issue at the forefront. In a sense, this makes EEG and MEG the 
most “honest” techniques: it is always obvious that the measured 
signal has multiple potential sources. Functional MRI data are so 
beautifully localized to gray matter, with surprising precision for a 
noninvasive imaging modality, that it is tempting to believe that we 
know exactly where that signal is coming from. However, existing 
literature—some of which has been discussed above—provides ample 
evidence that this beautifully localized fMRI signal is often modulated 
by quite remote neuronal populations. So, in this sense, the fMRI sig-
nal is not well-localized at all. What is most surprising, perhaps, is that 
single-unit electrophysiology recordings suffer from a signal-localiza-
tion problem that is quite similar to the problem suffered by fMRI. It is 
not possible to sample all neurons in the brain simultaneously, so when 
a fi ring rate or spiking threshold is modulated, it is quite diffi cult to 
infer the source of that signal modulation from electrophysiological 
recordings. The “So what is fMRI good for?” section will discuss how 
the whole-brain coverage of fMRI, particularly when used in the con-
text of connectivity analyses, offers an exciting opportunity to address 
this “source localization” problem, even though fMRI is frustratingly 
blind to the specifi c neurons giving rise to the signal we measure.    

 The particular challenges encountered in hV4 

 Thus far, in considering the limitations of fMRI for elucidating the 
mechanisms of neural information encoding, the key ideas have been 
(1) lack of selectivity to neuronal subpopulations and (2) the fact that 
information refl ected in any given neuronal population can come 
from either local computations or modulation by long-range connec-
tions to remote neuronal populations.  A priori  encoding models are 
required to interpret fMRI data. However, if quantitative fi ts to 
encoding models are diffi cult in V1, they are that much more diffi -
cult in mid-tier and higher visual areas because of the increased 
complexity of the feature space encoded by the neurons. A world-
view-changing summary of this problem is available in DiCarlo, 
Zoccolan, and Rust  2012 . That article clearly articulates the problem 
of approaching mid-tier visual areas in the same way that we have 
approached V1, with normalized linear/nonlinear (NLN) models: it is 
diffi cult to conceive of acquiring enough neuroscience data to con-
strain parameters in the “deep stack” of NLN models required to 
approach mid-tier regions such as hV4 from the bottom up. This is 
particularly challenging as we can rely less and less on animal 
models as we move into higher visual areas. 

 Not only is the modeling more complicated as we move beyond 
V1 to mid-tier visual regions, but demands on imaging resolution 
(not only voxel size but also the accuracy of registration to reference 
anatomy) increase as we look at smaller visual regions like the sub-
units of lateral occipital complex (LOC) (Sayres & Grill-Spector, 
 2008 ). In V1, it is straightforward to identify representations of sep-
arate regions of the visual fi eld and study how these interact (de Wit 
et al.,  2012 ; Kok & de Lange,  2014 ); standard 3–5 mm resolution is 
suffi cient. In mid-tier visual areas, however, the entire retinotopic 
map might span only a few centimeters, and separation of signals from 
different regions of the visual fi eld requires millimeter-precision. 

 Imaging is further complicated for mid-tier regions on the 
ventral surface of the brain because the image quality is degraded 
by motion artifacts (subject motion, as well as partial-volume 
effects as the brain moves in response to pulse and respiration) and 
magnetic fi eld inhomogeneities caused by tissue interfaces. V1, 
where we have so much experience with high-resolution imaging 
and model fi tting, has a rather privileged location where anatomy is 

relatively homogenous and image quality is optimal. V1 is further 
privileged by the fact that it has particularly strong vascularization 
(Zheng et al.,  1991 ) and potentially stronger hemodynamic responses 
than other regions in the visual system. 

 As a good example of the challenge of getting high-quality fMRI 
data in ventral cortex, we can pick human V4 (hV4). The diffi culty 
of arriving at a consensus on whether cortex adjacent and inferior 
to dorsal V3 contains a quarterfi eld representation of the upper 
visual fi eld (Tootell & Hadjikhani,  2001 ) or a complete hemifi eld 
representation (Witthoft et al.,  2014 ) is a good example of the prac-
tical diffi culty of studying ventral visual regions. Given the spatial 
precision of fMRI, it is astonishing that something as big as a 
retinotopic map in an evidently retinotopic visual area would be 
diffi cult to agree on, but the ambiguity has been evident in my 
laboratory's data, as well. For most subjects, we see a clear hemi-
fi eld, albeit sometimes in only one hemisphere and not the other. 
For some subjects, we cannot defi nitively identify a full hemifi eld 
representation in either hemisphere, even though we are convinced 
it should be there. 

 It is likely that methodological limitations—specifi cally distor-
tions and signal loss (Olman et al.,  2009 ) caused by the transverse 
sinus (Winawer et al.,  2010 )—play a signifi cant role in creating 
ambiguity about ventral visual representations. When we do retino-
topic mapping with Spin Echo EPI data instead of the standard 
Gradient Echo (T 2 *-weighted) EPI data (Olman et al.,  2010 ), we 
see more reliable signal from ventral visual regions. Spin Echo EPI 
is T 2 -weighted: insensitive to fi eld perturbations that occur over 
spatial scales larger than  ∼ 100 microns and, therefore, subject to 
distortion but not signal dropout from the large sinus. T 2 -weighted 
fMRI is not practical at 3 T but produces beautiful data at 7 T, albeit 
with a contrast-to-noise ratio roughly half that of T 2 *-weighted 
fMRI (Olman et al.,  2010 ). T 2 *-weighted EPI data from V4 may 
not be robust enough—barring the use of high-resolution to combat 
drop-out, and high parallel imaging reduction factors to combat 
distortion—to provide a fi rm enough footing from which to embark 
on a careful study of neural response properties using fMRI. For 
studies that want a uniform sampling of ventral visual regions, 
or the ability to quantify distinct information representations in 
distinct regions of the visual fi eld, Spin Echo EPI techniques at 7 T 
are likely worth the trouble.   

 So what is fMRI good for? 

 The above arguments are aimed at this central question: can fMRI 
be used to discover neural information encoding in a given region 
of cortex? To recap the main arguments thus far: it is prohibitively 
complicated—or at least it will take a very long time—to work 
from the bottom up to build an encoding model that represents a 
fi rst-principled understanding of how neurons extract the informa-
tion encoded in a mid-tier visual region. Can we take advantage of 
high-resolution, noninvasive neuroimaging to shortcut the process 
and discover information representations in mid-tier visual areas? 
The simplest answer to this question is “no.” Even with an encod-
ing model, or at least an  a priori  expectation for what information 
is encoded locally, our experiences in V1 have taught us that the 
localized fMRI signal is a mixture of locally encoded information 
and modulatory signals originating elsewhere in the brain. In the 
absence of independent measures of local information encoding, any 
information we discover—whether through a decoding analysis 
or in the mean signal of a traditional linear regression analysis—
cannot be unambiguously assigned as originating locally, nor can it 
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be clearly mapped to underlying neural tuning functions (as in the 
scary animal example). 

 So, if our ideas about neural information encoding in mid-tier 
visual areas need to come from elsewhere, what is fMRI good for? 
The remaining discussion focuses on the fact that fMRI is particu-
larly useful for two things: (1) validating or excluding models and 
(2) identifying information that is held in common throughout 
multiple visual areas. On these two fronts, fMRI offers unparal-
leled opportunities.  

 Model validation 

 While fMRI might not be able to provide direct measures of local 
information encoding, fMRI can be very useful for validating 
models. Recently, Freeman et al. ( 2013 ) took this approach in V2. 
Single-unit electrophysiological recordings indicated that V2 cells 
in nonhuman primates differentiated between naturalistic images 
that differed in higher-order pixel luminance statistics (higher than 
second order). Functional MRI data verifi ed that this was a general 
property in V2, but not V1, by determining that the signal through-
out V2 depended on higher order statistics; the study further con-
fi rmed that the V2 sensitivity to higher-order statistics matched 
observer's behavioral thresholds. The experiment might have been 
done in reverse order, or the electrophysiological data might have 
been excluded, since there are other reasons to believe that high-
order statistical sensitivity originates in V2. Regardless of the 
details, the reason this approach was successful in convincing us 
that V2 encodes a particular type of information is that a direct 
comparison was made between behavior and a clearly defi ned 
type of visual information, which was shown to modulate V2 but 
not V1.   

 Connectivity analyses for determining shared information 

 There are two things we want to know: (1) how information is 
encoded locally and (2) what information that is shared between 
visual areas. We cannot use fMRI to address the fi rst point without 
neurophysiologically plausible (quantitative and falsifi able) encod-
ing models, and these remain challenging to construct. The second 
problem, however, is perfectly tailored to the strengths of fMRI, since 
well-localized signals that are simultaneously acquired throughout 
the brain are readily available. 

 Visually responsive regions of the brain can profi tably be 
viewed as a network rather than a hierarchy of areas. While some 
object recognition tasks may be accomplished with a single pass 
through the system (Epshtein et al.,  2008 ), many visual tasks 
require iterative computations between different levels in this hier-
archy. At about 10 ms per level (Nowak & Bullier,  1997 ), informa-
tion representations have been shared between visual areas several 
times before we recognize an object or saccade to our next target. 
An alternative to focusing on the local neural networks that 
encode different kinds of visual information in different visual 
areas is to focus on discovering what information is shared between 
visual areas. 

 Limiting the discussion for now to the retinotopically orga-
nized areas that can be revealed with a simple protocol (perhaps 
V1/2/3/4/3AB/7/IPS1+/pLOC, although there are certainly other 
candidates), we are considering a network with nodes separated 
by a few centimeters and distributed across perhaps a 12 cm × 12 cm 
× 6 cm volume. At the 1–5 mm resolution afforded by standard 
fMRI techniques, we can resolve representations of different 

locations in the visual fi eld (retinotopy) within each of these 
regions, and we can study response dependencies between these 
regions and subregions. The temporal dynamics of this informa-
tion sharing are evidently inaccessible except by creative experi-
ment design. However, the spatial attributes are perfectly matched 
to fMRI. 

 Results from connectivity analyses are, of course, as open to 
misinterpretation as results from decoding analyses: all we are 
doing when we calculate task-dependent correlations between 
voxels (Baldassano et al.,  2012 ) or regions (McLaren et al.,  2012 ; 
O'Reilly et al.,  2012 ) is discovering what information is shared 
between regions. We remain ignorant of how that information 
is shared or what neural mechanisms are used to calculate it. 
However, with connectivity analyses, particularly connective fi eld 
modeling (Haak et al.,  2012 ) and task-dependent connectivity 
(Friston et al.,  1997 ), combined with intelligent (parameterized) 
experiment design, we can effi ciently explore theories about the 
kind of information passed between nodes in this hierarchical 
network. This, in turn, will let us form hypotheses about the inputs 
and outputs of different nodes in the network and design experi-
ments to quantitatively model selectivity of different regions to 
information identifi ed through connectivity analyses. 

 Lately we have invested signifi cant effort in understanding 
whether depth-resolved measurements can be used to extend 
inter-regional connectivity analyses by isolating subpopulations at 
different cortical depths with different input/output relationships 
(Callaway,  2004  ; Markov et al.,  2014 ). Our preliminary studies are 
encouraging (Olman et al.,  2012 ), but so far, none can be unambig-
uously connected to quantitative encoding models. We therefore do 
not know whether depth-resolved fMRI will provide unique infor-
mation about how information is shared between visual areas. 
Even if it does, we will still have dramatically fewer data points 
than neuron types, so fMRI will never be able to stand on its own 
as an estimate of the neural information computed in or shared 
between visual areas. But linked to quantitative computational 
models informed by single unit, behavioral and EEG/MEG data—
as well as imaging modalities we haven't invented yet—fMRI data 
provide key information about long-range correlations between 
localized population responses.    

 Conclusion 

 The fundamental conclusion is that, while fMRI is very good at 
discovering information representations in the brain, it cannot be 
used to unambiguously connect visual information encoding to 
specifi c neural populations. Functional fMRI can discover what 
information is refl ected at a given location but not how that infor-
mation is encoded. Because the simple availability of information 
does not help us understand the function of the visual system, 
fMRI cannot stand on its own in studying vision. The connection 
between information computation (visual feature extraction) and 
local neural networks needs to be made by encoding models with 
parameters constrained by every dataset available—behavioral, 
electrophysiological, theoretical, and computational. Once a model 
is specifi ed, fMRI experiments are powerful for testing whether a 
particular local population might support a given model. No other 
technique allows us to localize signals with the precision of fMRI, 
so it remains a critical tool for understanding the mechanisms sup-
porting human visual behaviors. But a critical fi rst step is to reduce 
the dimensionality of the problem with  a priori  knowledge or prin-
cipled assumptions of the underlying tuning functions.    
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