CHAPTER 8: GRAPHICAL MODELS
Bayesian Networks

Directed Acyclic Graph (DAG)

\[p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a) \]

\[p(x_1, \ldots, x_K) = p(x_K|x_1, \ldots, x_{K-1}) \ldots p(x_2|x_1)p(x_1) \]
Bayesian Networks

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General Factorization

\[p(x) = \prod_{k=1}^{K} p(x_k|\text{pa}_k) \]
Bayesian Curve Fitting (1)

Polynomial

\[y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j x^j \]

\[
p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))
\]
Bayesian Curve Fitting (2)

\[p(t, w) = p(w) \prod_{n=1}^{N} p(t_n | y(w, x_n)) \]
Bayesian Curve Fitting (3)

Input variables and explicit hyperparameters

\[p(t, w | x, \alpha, \sigma^2) = p(w | \alpha) \prod_{n=1}^{N} p(t_n | w, x_n, \sigma^2). \]
Bayesian Curve Fitting—Learning

Condition on data

\[p(w|t) \propto p(w) \prod_{n=1}^{N} p(t_n|w) \]
Bayesian Curve Fitting—Prediction

Predictive distribution: \(p(\hat{t}|\hat{x}, x, t, \alpha, \sigma^2) \propto \int p(\hat{t}, t, w|\hat{x}, x, \alpha, \sigma^2) \, dw \)

where

\[
p(\hat{t}, t, w|\hat{x}, x, \alpha, \sigma^2) = \left[\prod_{n=1}^{N} p(t_n|x_n, w, \sigma^2) \right] p(w|\alpha)p(\hat{t}|\hat{x}, w, \sigma^2)
\]
Generative Models

Causal process for generating images

Diagram showing the causal process with nodes for Object, Position, Orientation, and Image.
Discrete Variables (1)

General joint distribution: $K^2 \{1 \text{ parameters}\}$

\[
p(x_1, x_2 | \mu) = \prod_{k=1}^{K} \prod_{l=1}^{K} \mu_{kl}^{x_{1k}x_{2l}}
\]

Independent joint distribution: $2(K \{1 \text{ parameters}\)$

\[
\hat{p}(x_1, x_2 | \mu) = \prod_{k=1}^{K} \mu_{1k}^{x_{1k}} \prod_{l=1}^{K} \mu_{2l}^{x_{2l}}
\]
Discrete Variables (2)

General joint distribution over M variables:
$K^M \{ 1 \text{ parameters} \}$

M -node Markov chain: $K \{ 1 + (M \{ 1 \}) K(K \{ 1 \}) \text{ parameters} \}$
Discrete Variables: Bayesian Parameters

\[p(\{x_m, \mu_m\}) = p(x_1 | \mu_1) p(\mu_1) \prod_{m=2}^{M} p(x_m | x_{m-1}, \mu_m) p(\mu_m) \]

\[p(\mu_m) = \text{Dir}(\mu_m | \alpha_m) \]
Discrete Variables: Bayesian Parameters

\[(2)\]

\[
p\left(\{x_m\}, \mu_1, \mu\right) = p(x_1 | \mu_1) p(\mu_1) \prod_{m=2}^{M} p(x_m | x_{m-1}, \mu) p(\mu)
\]
Parameterized Conditional Distributions

If x_1, \ldots, x_M are discrete, K-state variables, $p(y = 1 | x_1, \ldots, x_M)$ in general has $O(K^M)$ parameters.

The parameterized form

$$p(y = 1 | x_1, \ldots, x_M) = \sigma \left(w_0 + \sum_{i=1}^{M} w_i x_i \right) = \sigma(w^T x)$$

requires only $M + 1$ parameters.
Linear-Gaussian Models

Directed Graph

\[p(x_i | pa_i) = \mathcal{N} \left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right. \right) \]

Each node is Gaussian, the mean is a linear function of the parents.

Vector-valued Gaussian Nodes

\[p(x_i | pa_i) = \mathcal{N} \left(x_i \left| \sum_{j \in pa_i} W_{ij} x_j + b_i, \Sigma_i \right. \right) \]
Conditional Independence

\(a \) is independent of \(b \) given \(c \)

\[
p(a|b, c) = p(a|c)
\]

Equivalently

\[
p(a, b|c) = p(a|b, c)p(b|c) = p(a|c)p(b|c)
\]

Notation

\(a \perp b \mid c \)
Conditional Independence: Example 1

\[p(a, b, c) = p(a|c)p(b|c)p(c) \]

\[p(a, b) = \sum_c p(a|c)p(b|c)p(c) \]

\[a \ind b \mid \emptyset \]
Conditional Independence: Example 1

\[p(a, b | c) = \frac{p(a, b, c)}{p(c)} = p(a | c) p(b | c) \]

\[a \perp b | c \]
Conditional Independence: Example 2

\[p(a, b, c) = p(a)p(c|a)p(b|c) \]

\[p(a, b) = p(a) \sum_c p(c|a)p(b|c) = p(a)p(b|a) \]

\[a \perp b \mid \emptyset \]
Conditional Independence: Example 2

\[p(a, b|c) = \frac{p(a, b, c)}{p(c)} \]
\[= \frac{p(a)p(c|a)p(b|c)}{p(c)} \]
\[= p(a|c)p(b|c) \]

\[a \perp b | c \]
Conditional Independence: Example 3

Note: this is the opposite of Example 1, with c unobserved.

\[p(a, b, c) = p(a)p(b)p(c|a, b) \]
\[p(a, b) = p(a)p(b) \]
\[a \perp b \mid \emptyset \]
Conditional Independence: Example 3

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a)p(b)p(c|a, b)}{p(c)}$$

$$a \independent b \mid c$$

Note: this is the opposite of Example 1, with c observed.
“Am I out of fuel?”

\[
\begin{align*}
 p(G = 1 | B = 1, F = 1) &= 0.8 \\
p(G = 1 | B = 1, F = 0) &= 0.2 \\
p(G = 1 | B = 0, F = 1) &= 0.2 \\
p(G = 1 | B = 0, F = 0) &= 0.1 \\
p(B = 1) &= 0.9 \\
p(F = 1) &= 0.9 \\
\text{and hence} \\
p(F = 0) &= 0.1
\end{align*}
\]

B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (0=empty, 1=full)
G = Fuel Gauge Reading
 (0=empty, 1=full)
“Am I out of fuel?”

\[
p(F = 0 | G = 0) = \frac{p(G = 0 | F = 0)p(F = 0)}{p(G = 0)} \approx 0.257
\]

Probability of an empty tank increased by observing \(G = 0 \).
“Am I out of fuel?”

\[
p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0, 1\}} p(G = 0|B = 0, F)p(F)} \\
\approx 0.111
\]

Probability of an empty tank reduced by observing \(B = 0\). This referred to as “explaining away”.

D-separation

• A, B, and C are non-intersecting subsets of nodes in a directed graph.
• A path from A to B is blocked if it contains a node such that either
 a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
• If all paths from A to B are blocked, A is said to be d-separated from B by C.
• If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B \mid C$.
D-separation: Example

\[a \Perp b \mid c \]

\[a \not\Perp b \mid c \]
D-separation: I.I.D. Data

\[
p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)
\]

\[
p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu)p(\mu) \, d\mu \neq \prod_{n=1}^{N} p(x_n)
\]
Directed Graphs as Distribution Filters

$p(x)$ → Directed Graph DF
The Markov Blanket

\[p(x_i | x_{\{j \neq i\}}) = \frac{p(x_1, \ldots, x_M)}{\int p(x_1, \ldots, x_M) \, dx_i} = \frac{\prod_k p(x_k | pa_k)}{\int \prod_k p(x_k | pa_k) \, dx_i} \]

Factors independent of \(x_i \) cancel between numerator and denominator.
Markov Random Fields

\[A \perp B \mid C \]

Markov Blanket
Cliques and Maximal Cliques
Joint Distribution

\[p(x) = \frac{1}{Z} \prod_C \psi_C(x_C) \]

where \(\psi_C(x_C) \) is the potential over clique \(C \) and

\[Z = \sum_x \prod_C \psi_C(x_C) \]

is the normalization coefficient; note: \(M \) \(K \)-state variables \(\rightarrow K^M \) terms in \(Z \).

Energies and the Boltzmann distribution

\[\psi_C(x_C) = \exp \{-E(x_C)\} \]
Illustration: Image De-Noising (2)

\[E(x, y) = h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_i \]

\[p(x, y) = \frac{1}{Z} \exp\{-E(x, y)\} \]
Illustration: Image De-Noising (3)

Noisy Image

Restored Image (ICM)
Illustration: Image De-Noising (4)

Restored Image (ICM) Restored Image (Graph cuts)
Converting Directed to Undirected Graphs (1)

\[p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_N|x_{N-1}) \]

\[p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]
Converting Directed to Undirected Graphs (2)

Additional links

\[p(x) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[= \frac{1}{Z} \psi_A(x_1, x_2, x_3) \psi_B(x_2, x_3, x_4) \psi_C(x_1, x_2, x_4) \]
Directed vs. Undirected Graphs (1)
Directed vs. Undirected Graphs (2)

\[A \perp B \mid \emptyset \]
\[A \nparallel B \mid C \]
\[A \nparallel B \mid \emptyset \]
\[A \perp B \mid C \cup D \]
\[C \perp D \mid A \cup B \]
Inference in Graphical Models

\[p(y) = \sum_{x'} p(y|x') p(x') \]
\[p(x|y) = \frac{p(y|x)p(x)}{p(y)} \]
Inference on a Chain

\[p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]

\[p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(x) \]
Inference on a Chain

\[p(x_n) = \frac{1}{Z} \left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \]

\[\mu_\alpha(x_n) \]

\[\mu_\beta(x_n) \]

\[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \cdots \]

\[\mu_\beta(x_n) \]
Inference on a Chain

\[\mu_\alpha(x_{n}) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \left[\sum_{x_{n-2}} \cdots \right] \]

\[= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \mu_\alpha(x_{n-1}). \]

\[\mu_\beta(x_{n}) = \sum_{x_{n+1}} \psi_{n,n+1}(x_{n}, x_{n+1}) \left[\sum_{x_{n+2}} \cdots \right] \]

\[= \sum_{x_{n+1}} \psi_{n,n+1}(x_{n}, x_{n+1}) \mu_\beta(x_{n+1}). \]
Inference on a Chain

\[
\begin{align*}
\mu_\alpha(x_{n-1}) &\quad \mu_\alpha(x_n) &\quad \mu_\beta(x_n) &\quad \mu_\beta(x_{n+1}) \\
\cdots &\quad \cdots &\quad \cdots &\quad \cdots \\
x_1 &\quad x_{n-1} &\quad x_n &\quad x_{n+1} &\quad x_N
\end{align*}
\]

\[
\begin{align*}
\mu_\alpha(x_2) &= \sum_{x_1} \psi_{1,2}(x_1, x_2) \\
\mu_\beta(x_{N-1}) &= \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \\
Z &= \sum_{x_n} \mu_\alpha(x_n) \mu_\beta(x_n)
\end{align*}
\]
Inference on a Chain

To compute local marginals:

• Compute and store all forward messages, \(\mu_\alpha(x_n) \).
• Compute and store all backward messages, \(\mu_\beta(x_n) \).
• Compute \(Z \) at any node \(x_m \).
• Compute

\[
p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)
\]

for all variables required.
Trees

- Undirected Tree
- Directed Tree
- Polytree
Factor Graphs

\[p(x) = f_a(x_1, x_2)f_b(x_1, x_2)f_c(x_2, x_3)f_d(x_3) \]

\[p(x) = \prod_{s} f_s(x_s) \]
Factor Graphs from Directed Graphs

\[
p(x) = p(x_1)p(x_2)
p(x_3|x_1, x_2)\]

\[
f(x_1, x_2, x_3) = p(x_1)p(x_2)p(3|x_1, x_2)\]

\[
f_a(x_1) = p(x_1)\]

\[
f_b(x_2) = p(x_2)\]

\[
f_c(x_1, x_2, x_3) = p(x_3|x_1, x_2)\]
Factor Graphs from Undirected Graphs

\[\psi(x_1, x_2, x_3) \]

\[f(x_1, x_2, x_3) = \psi(x_1, x_2, x_3) \]

\[f_a(x_1, x_2, x_3) f_b(x_2, x_3) = \psi(x_1, x_2, x_3) \]
The Sum-Product Algorithm (1)

Objective:

i. to obtain an efficient, exact inference algorithm for finding marginals;

ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

\[ab + ac = a(b + c) \]
The Sum-Product Algorithm (2)

\[p(x) = \sum_{x \setminus x} p(x) \]

\[p(x) = \prod_{s \in \text{ne}(x)} F_s(x, X_s) \]
The Sum-Product Algorithm (3)

\[
p(x) = \prod_{s \in \text{ne}(x)} \left[\sum_{X_s} F_s(x, X_s) \right]
\]

\[
= \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x).
\]

\[
\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s)
\]
The Sum-Product Algorithm (4)

\[F_s(x, X_s) = f_s(x, x_1, \ldots, x_M) G_1(x_1, X_{s1}) \cdots G_M(x_M, X_{sM}) \]
The Sum-Product Algorithm (5)

\[
\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \ldots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right]
\]

\[
= \sum_{x_1} \ldots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m)
\]
The Sum-Product Algorithm \((6) \)

\[
\mu_{x_m \to f_s}(x_m) = \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})
\]

\[
= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)
\]
The Sum-Product Algorithm (7)

Initialization

\[\mu_{x \rightarrow f}(x) = 1 \]

\[\mu_{f \rightarrow x}(x) = f(x) \]
The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.
Sum-Product: Example (1)

\[\tilde{p}(x) = f_a(x_1, x_2)f_b(x_2, x_3)f_c(x_2, x_4) \]
Sum-Product: Example (2)

\[
\begin{align*}
\mu_{x_1 \rightarrow f_a}(x_1) &= 1 \\
\mu_{f_a \rightarrow x_2}(x_2) &= \sum_{x_1} f_a(x_1, x_2) \\
\mu_{x_4 \rightarrow f_c}(x_4) &= 1 \\
\mu_{f_c \rightarrow x_2}(x_2) &= \sum_{x_4} f_c(x_2, x_4) \\
\mu_{x_2 \rightarrow f_b}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_b \rightarrow x_3}(x_3) &= \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \rightarrow f_b}(x_2)
\end{align*}
\]
Sum-Product: Example (3)

\[
\begin{align*}
\mu_{x_3 \rightarrow f_b}(x_3) &= 1 \\
\mu_{f_b \rightarrow x_2}(x_2) &= \sum_{x_3} f_b(x_2, x_3) \\
\mu_{x_2 \rightarrow f_a}(x_2) &= \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_a \rightarrow x_1}(x_1) &= \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \rightarrow f_a}(x_2) \\
\mu_{x_2 \rightarrow f_c}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \\
\mu_{f_c \rightarrow x_4}(x_4) &= \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \rightarrow f_c}(x_2)
\end{align*}
\]
Sum-Product: Example (4)

\[
\tilde{p}(x_2) = \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
= \left[\sum_{x_1} f_a(x_1, x_2) \right] \left[\sum_{x_3} f_b(x_2, x_3) \right] \left[\sum_{x_4} f_c(x_2, x_4) \right] \\
= \sum_{x_1} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4) \\
= \sum_{x_1} \sum_{x_3} \sum_{x_4} \tilde{p}(x)
\]
The Max-Sum Algorithm (1)

Objective: an efficient algorithm for finding

i. the value \(x^{\text{max}} \) that maximises \(p(x) \);

ii. the value of \(p(x^{\text{max}}) \).

In general, maximum marginals \(\neq \) joint maximum.

\[
\begin{array}{l|cc}
 & x = 0 & x = 1 \\
\hline
y = 0 & 0.3 & 0.4 \\
y = 1 & 0.3 & 0.0 \\
\end{array}
\]

\[
\arg \max_x p(x, y) = 1 \quad \arg \max_x p(x) = 0
\]
The Max-Sum Algorithm (2)

Maximizing over a chain (max-product)

\[p(x_{\text{max}}) = \max_x p(x) = \max_{x_1} \ldots \max_{x_M} p(x) \]

\[= \frac{1}{Z} \max_{x_1} \ldots \max_{x_N} \psi_{1,2}(x_1, x_2) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]

\[= \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\cdots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \right] \right] \]
The Max-Sum Algorithm (3)

Generalizes to tree-structured factor graph

\[
\max_x p(x) = \max_{x_n} \prod_{f_s \in \text{ne}(x_n)} \max_{X_s} f_s(x_n, X_s)
\]

maximizing as close to the leaf nodes as possible
The Max-Sum Algorithm (4)

Max-Product \rightarrow Max-Sum

For numerical reasons, use

$$
\ln \left(\max_x p(x) \right) = \max_x \ln p(x).
$$

Again, use distributive law

$$
\max(a + b, a + c) = a + \max(b, c).
$$
The Max-Sum Algorithm (5)

Initialization (leaf nodes)

\[\mu_{x \rightarrow f}(x) = 0 \quad \mu_{f \rightarrow x}(x) = \ln f(x) \]

Recursion

\[\mu_{f \rightarrow x}(x) = \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

\[\phi(x) = \arg \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

\[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x) \]
The Max-Sum Algorithm (6)

Termination (root node)

\[p^{\text{max}} = \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]

\[x^{\text{max}} = \arg \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right] \]

Back-track, for all nodes \(i \) with \(l \) factor nodes to the root (\(l=0 \))

\[x^{\text{max}}_l = \phi(x^{\text{max}}_{i,l-1}) \]
The Max-Sum Algorithm (7)

Example: Markov chain

\[k = 1 \quad \square \quad \square \quad \square \quad \square \quad \ldots \]

\[k = 2 \quad \square \quad \square \quad \square \quad \square \quad \ldots \]

\[k = 3 \quad \square \quad \square \quad \square \quad \square \quad \ldots \]

\[n - 2 \quad n - 1 \quad n \quad n + 1 \]
The Junction Tree Algorithm

• *Exact* inference on general graphs.
• Works by turning the initial graph into a *junction tree* and then running a sum-product-like algorithm.
• *Intractable* on graphs with large cliques.
Loopy Belief Propagation

• Sum-Product on general graphs.
• Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!).
• *Approximate* but *tractable* for large graphs.
• Sometime works well, sometimes not at all.