Approximation Methods for Posteriors and Marginal Likelihoods

- Laplace approximation
- Bayesian Information Criterion (BIC)
- Variational approximations
- Expectation Propagation (EP)
- Markov chain Monte Carlo methods (MCMC)
- Exact Sampling

...
Answers and expectations

For a function $f(x)$ and distribution $P(x)$, the expectation of f with respect to P is

$$E_{P(x)}[f(x)] = \sum f(x)P(x)$$

The expectation is the average of f, when X is drawn from the probability distribution P.
The Monte Carlo principle

The expectation of f with respect to P can be approximated by

$$E_{P(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

where the X_i are sampled from $P(x)$

Example 1: the average # of spots on a die roll
The Monte Carlo principle

The law of large numbers

Number of rolls

CSCI 5521 Pattern Recognition, Prof. Paul Schrater, Fall 2005
More formally...

\[\mu = E_{P(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i) = \mu_{MC} \]

\(\mu_{MC} \) is consistent, \((\mu_{MC} - \mu) \to 0 \text{ a.s. as } n \to \infty \)
\(\mu_{MC} \) is unbiased, with \(E[\mu_{MC}] = \mu \)
\(\mu_{MC} \) is asymptotically normal, with

\[\sqrt{m} (\mu_{MC} - \mu) \to N(0, \sigma_{MC}^2) \quad \text{in distribution} \]

\[\sigma_{MC}^2 = E_{P(x)}[(f(x) - E_{P(x)}[f(x)])^2] \]

CSCI 5521 Pattern Recognition, Prof. Paul Schrater, Fall 2005
When simple Monte Carlo fails

- Efficient algorithms for sampling only exist for a relatively small number of distributions
Inverse cumulative distribution

\[\int_0^x p(x) \, dx \]

(requires CDF be invertible)
Rejection sampling

Want to sample from: \(f(\theta) = \frac{g(\theta)}{\int g(\theta) d\theta} \)

Rejection sampling uses an easy to sample from density \(s(\theta) \)

Requirement: \(\frac{g(\theta)}{s(\theta)} \) is (upper) bounded by \(A \).

Rejection sampling algorithm

For each sample

Do until one \(\theta \) is accepted

1. sample a point \(\theta \) from the known distribution \(s(\theta) \);
2. sample \(y \) from the uniform distribution on \([0, 1]\);
3. if \(Ay \leq \frac{g(\theta)}{s(\theta)} \) then break and accept \(\theta \);
When simple Monte Carlo fails

- Efficient algorithms for sampling only exist for a relatively small number of distributions
- Sampling from distributions over large discrete state spaces is computationally expensive
 - mixture model with n observations and k components, HMM with n observations and k states, k^n possibilities
- Sometimes we want to sample from distributions for which we only know the probability of each state up to a multiplicative constant
Why Bayesian inference is hard

\[P(h \mid d) = \frac{P(d \mid h)P(h)}{\sum_{h' \in H} P(d \mid h')P(h')} \]

Evaluating the posterior probability of a hypothesis requires summing over all hypotheses

(statistical physics: computing partition function)
Modern Monte Carlo methods

• Sampling schemes for distributions with large state spaces known up to a multiplicative constant

• Two example approaches:
 – importance sampling
 – Markov chain Monte Carlo
Importance sampling

Basic idea: generate from the wrong distribution, assign weights to samples to correct for this

$$E_{p(x)}[f(x)] = \int f(x)p(x)dx$$

$$= \int f(x)\frac{p(x)}{q(x)}q(x)dx$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)\frac{p(x_i)}{q(x_i)}$$ for $x_i \sim q(x)$
Importance sampling

works when sampling from proposal is easy, target is hard
An alternative scheme...

\[E_{p(x)}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i) \frac{p(x_i)}{q(x_i)} \quad \text{for } x_i \sim q(x) \]

\[E_{p(x)}[f(x)] \approx \frac{\sum_{i=1}^{n} f(x_i) \frac{p(x_i)}{q(x_i)}}{\sum_{i=1}^{n} \frac{p(x_i)}{q(x_i)}} \quad \text{for } x_i \sim q(x) \]

works when \(p(x) \) is known up to a multiplicative constant
More formally...

$$\mu_{IS}$$ is consistent, $$(\mu_{IS} - \mu) \rightarrow 0 \text{ a.s. as } n \rightarrow \infty$$

$$\mu_{IS}$$ is asymptotically normal, with

$$\mu_{IS} = \frac{1}{n} \left(E_{p(x)}[f(x)] E_{p(x)} \left[\frac{p(x)}{q(x)} \right] - E_{p(x)} \left[f(x) \frac{p(x)}{q(x)} \right] \right)$$
Optimal importance sampling

• Asymptotic variance is

\[\sigma_{IS}^2 = \mathbb{E}_{p(x)} \left[(f(x) - \mathbb{E}_{p(x)}[f(x)])^2 \frac{p(x)}{q(x)} \right] \]

• This is minimized by

\[q(x) \propto \left| f(x) - \mathbb{E}_{p(x)}[f(x)] \right| p(x) \]
Optimal importance sampling
Likelihood weighting

• A particularly simple form of importance sampling for posterior distributions
• Use the prior as the proposal distribution
• Weights:

$$\frac{p(\theta | D)}{p(\theta)} = \frac{p(D | \theta) p(\theta)}{p(D) p(\theta)} = \frac{p(D | \theta)}{p(D)} \propto p(D | \theta)$$
Likelihood weighting

- Generate samples of all variables except observed variables
- Assign weights proportional to probability of observed data given values in sample
Importance sampling

• A general scheme for sampling from complex distributions that have simpler relatives
• Simple methods for sampling from posterior distributions in some cases (easy to sample from prior, prior and posterior are close)
• Can be more efficient than simple Monte Carlo
 – particularly for, e.g., tail probabilities
• Also provides a solution to the question of how we can update beliefs as data come in…
Particle filtering

We want to generate samples from $P(s_4 | d_1, \ldots, d_4)$

$$P(s_4 | d_1, \ldots, d_4) \propto P(d_4 | s_4)P(s_4 | d_1, \ldots, d_3)$$

$$= P(d_4 | s_4) \sum_{s_3} P(s_4 | s_3)P(s_3 | d_1, \ldots, d_3)$$

We can use likelihood weighting if we can sample from $P(s_4 | s_3)$ and $P(s_3 | d_1, \ldots, d_3)$
Particle filtering

\[P(s_4 \mid d_1, \ldots, d_4) \propto P(d_4 \mid s_4) \sum_{s_3} P(s_4 \mid s_3) P(s_3 \mid d_1, \ldots, d_3) \]
Tweaks and variations

• If we can enumerate values of s_4, can sample from

$$P(s_4 \mid d_1, \ldots, d_4) \propto P(d_4 \mid s_4) \sum_{i=1}^{n} P(s_4 \mid s_3^{(i)})$$

• No need to resample at every step, since we can accumulate weights over multiple observations
 – resampling reduces diversity in samples
 – only necessary when variance of weights is large

• Stratification and clever resampling schemes reduce variance
 (Fearnhead, 2001)
The promise of particle filters

• People need to be able to update probability distributions over large hypothesis spaces as more data become available
• Particle filters provide a way to do this with limited computing resources…
 – maintain a fixed finite number of samples
• Not just for dynamic models
 – can work with a fixed set of hypotheses, although this requires some further tricks for maintaining diversity
Markov chain Monte Carlo

- Basic idea: construct a *Markov chain* that will converge to the target distribution, and draw samples from that chain
- Just uses something proportional to the target distribution (good for Bayesian inference!)
- Can work in state spaces of arbitrary (including unbounded) size (good for nonparametric Bayes)
Variables $x^{(t+1)}$ independent of all previous variables given immediate predecessor $x^{(t)}$

Transition matrix

$T = P(x^{(t+1)}|x^{(t)})$
An example: card shuffling

- Each state $x^{(t)}$ is a permutation of a deck of cards (there are $52!$ permutations)
- Transition matrix T indicates how likely one permutation will become another
- The transition probabilities are determined by the shuffling procedure
 - riffle shuffle
 - overhand
 - one card
Convergence of Markov chains

• Why do we shuffle cards?
• Convergence to a uniform distribution takes only 7 riffle shuffles…
• Other Markov chains will also converge to a stationary distribution, if certain simple conditions are satisfied (called “ergodicity”)
 – e.g. every state can be reached in some number of steps from every other state
Markov chain Monte Carlo

- States of chain are variables of interest
- Transition matrix chosen to give target distribution as stationary distribution

Transition matrix
\[T = P(x^{(t+1)}|x^{(t)}) \]
Metropolis-Hastings algorithm

• Transitions have two parts:
 – proposal distribution: \(Q(x^{(t+1)}|x^{(t)}) \)

 – acceptance: take proposals with probability

\[
A(x^{(t)}, x^{(t+1)}) = \min\left(1, \frac{P(x^{(t+1)}) Q(x^{(t)}|x^{(t+1)})}{P(x^{(t)}) Q(x^{(t+1)}|x^{(t)})} \right)
\]
Metropolis-Hastings algorithm

$p(x)$
Metropolis-Hastings algorithm

$p(x)$
Metropolis-Hastings algorithm

\(p(x) \)
Metropolis-Hastings algorithm

\[A(x^t, x^{t+1}) = 0.5 \]
Metropolis-Hastings algorithm
Metropolis-Hastings algorithm

\[A(x^{(t)}, x^{(t+1)}) = 1 \]
Metropolis-Hastings in a slide
Metropolis-Hastings algorithm

• For right stationary distribution, we want

\[\int \pi(x)T(x, y)\,dx = \pi(y) \]

• Sufficient condition is detailed balance:

\[\pi(x)T(x, y) = \pi(y)T(y, x) \]
Metropolis-Hastings algorithm

\[T(x, y) = Q(y|x)A(x, y) \]
\[= Q(y|x) \min \left\{ 1, \frac{\pi(y)Q(x|y)}{\pi(x)Q(y|x)} \right\} \]

\[\pi(x)T(x, y) = \pi(x)Q(y|x) \min \left\{ 1, \frac{\pi(y)Q(x|y)}{\pi(x)Q(y|x)} \right\} \]
\[= \min \left\{ \pi(x)Q(y|x), \pi(y)Q(x|y) \right\} \]

This is symmetric in \((x, y)\) and thus satisfies detailed balance