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Introduction

In this lecture we will look at RBFs, networks where the
activation of hidden is based on the distance between
the input vector and a prototype vector

Radial Basis Functions have a number of
interesting properties

e Strong connections to other disciplines

— function approximation, regularization theory, density estimation and
interpolation in the presence of noise [Bishop, 1995]

e RBFs allow for a straightforward interpretation of the
iInternal representation produced by the hidden layer

e RBFs have training algorithms that are significantly
faster than those for MLPs

e RBFs can be implemented as support vector machines
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Radial Basis Functions

e Discriminant function flexibility
—NON-Linear

*But with sets of linear parameters at each layer
*Provably general function approximators for sufficient nodes

e Error function

—Mixed- Different error criteria typically used for hidden vs.
output layers.

—Hidden: Input approx.
—Output: Training error
e Optimization

— Simple least squares - with hybrid training solution 1s
unique.
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Two layer Non-linear NN
Output

Adjustable centers c,
Adjustable spreads o,

Inputs X, X5 X

Non-linear functions are radially symmetric ‘kernels’, with free
parameters
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Input to Hidden Mapping

e Each region of feature space by means of a radially symmetric

function
— Activation of a hidden unit is determined by the DISTANCE between the input

vector x and a prototype vector u
| | | | (Pj(x):f(lx_“j)

e Choice of radial basis function
Although several forms of radial basis may be used, Gaussian kernels are

most commonly used
- The Gaussian kernel may have a full-covariance structure. which reauires D(D+3)/2

parameters to be learned | 1 )
(P,-(X)z exp[—g(x — M )sz 1(X _“J)}

— or a diagonal structure, with only (D+1) independent parameters

_||X‘“i_

(Pj(x): exp{ Tzl]

J

In practice, a trade-off exists between using a small number of basis with many
parameters or a larger number of less flexible functions [Bishop, 1995]
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Builds up a function out of ‘Spheres’

'[') pical data point
(in 2 dlmensmns

WCO

W4 e
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RBF vs. NN

(a) (b)

Figure 5.8. Schematic example of data points in two dimensions which fall into
three distinct classes. One way to separate the classes is to use hyperplanes,
shown in (a), as used in a multi-layer perceptron. An alternative approach,
shown in (b}, is to fit each class with a kernel function, which gives the type

of representation formed by a radial basis function network.
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XOR with RBF

Consider the nonlinear functions to map the input vector x to the ¢,- ¢, space
iy A=y
s 2 B
@r(x)=e 78 t, =[0 0]
» X,
A
(1,1)
Inputx | 9,(x) | (%) 1070
(1,1) 1 |0.1353 Z> S8
0.6t ™
(0,1) | 0.3678 | 0.3678 ‘
0.4
(1,0) 0.3678 | 0.3678 ) :‘1':"’; 8] i
(0,0) 0.1353 ] 0.27 \'""‘-.. o (0.0
b . O .“‘ '

0 02 04 06 08 1.0 12

The nonlinear ¢ function transformed a nonlinearly separable problem into a linearly separable one !!!



RBFs have their origins in techniques for
performing exact interpolation

These techniques place a basis function at each of
the training examples f(x)

and compute the coefficients wkso that the
“mixture model” has zero error at examples

f(x) o f(x) o f(x)




Formally: Exact Interpolation

Goal: Find a function A(x), such that A(x;) = t.,
for inputs x; and targets t;

y=h(x)=Y wo([x-x,

y Recall the Kernel
i=1:n
_ . ) L trick
@y @ 0 O | W l
Form @ Q SRR 1), W t
21 22 2 2| — 2 —_ _
: ; : I Py = (p(‘ X; XJH)

_(pnl (an (pnn__wn_ _tn_
t

Solve for w
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Solving conditions

» Micchelli's Theorem: If the points x; are distinct, then the ®
matrix will be nonsingular.

Mhaskar and Micchelli, Approximation by superposition of sigmoidal and radial basis functions,
Advances in Applied Mathematics,13, 350-373, 1992.
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Radial Basis Function Kernel

e Radial basis function kernel

| 1 .-
k(x,z) = exp !—FHX - z||2]

Here o controls the “width” of the kernel.

e Kernel only depends on the difference x — z, 1.e. the relative

location of the points to one another, = shift imvariance

e Kernel only depends on the Euclidean distance between two

patterns, k(x,z) = k(||x — z||), = radially symmetric
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Radial Basis function Networks

n outputs, m basis functions

Vi =h(X) = Ewki(pi(x> + Wioo

i=l:m

= .Ewkiqpi(x

=0:m

Rewrite this as:

y=Wox), @ -=
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Learning

RBFs are commonly trained following a hybrid procedure
that operates in two stages

Unsupervised selection of RBF centers
— RBF centers are selected so as to match the distribution of training examples
in the input feature space
— This is the critical step in training, normally performed in a slow iterative
manner
— A number of strategies are used to solve this problem

e Supervised computation of output vectors
Hidden-to-output weight vectors are determined so as to minimize the sum-
squared
— error between the RBF outputs and the desired targets
- IS_,ince the outputs are linear, the optimal weights can be computed using fast,
inear
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Least squares solution for output weights

Given L input vectors x;, with labels 7,
Form the least square error function:

E = E E{yk(xl) - tf}z, t is the k™ value of the target vector

[=1:L k=1:n

E=YEx)-t)Fx)-t)

[=1:L

= Y @(x,)W' - 1) (@(x,)W' - )

[=1:L

E=Y@W -7 @W' -T) = Y WOOW' -2WP'T+T'T

[=1:L [=1:L

JE
= 0= DOW' - 2P'T
dW W

W' = (CI)tCI))_ICI)fT
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Solving for input parameters

* Now we have a linear solution, if we know the input
parameters. How do we set the input parameters?

— Gradient descent--like Back-prop

— Density estimation viewpoint: By looking at the meaning of
the RBF network for classification, the input parameters can
be estimated via density estimation and/or clustering
techniques

— We will skip these in lecture
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Unsupervised methods overview

e Random selection of centers
— The simplest approach is to randomly select a number of training examples as

RBF centers
- This method has the advantage of being very fast, but the network will likely require an
excessive number of centers

— Once the center positions have been selected, the spread parameters g can be
estimated, for instance, from the average distance between neighboring centers

. Clustering
— Alternatively, RBF centers may be obtained with a clustering procedure such as
the k-means algorithm
The spread parameters can be computed as before, or from the sample covariance
of the examples of each cluster

. Density estimation

The position of the RB centers may also be obtained by modeling the feature
space density with a Gaussian Mixture Model using the Expectation- Maximization
algorithm

The spread parameters for each center are automatically obtained from the
covariance matrices of the corresponding Gaussian components
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Probabilistic Interpretion of RBFs for

Classification
_ p(x[C,)P(C)
P(Cklx)_ p(x)
p(x|Cy ) P(Ck) e 1
E Zk (x|Cr ) P(Cir) —;wqubj(x)
C
D (x) = p(x|C)

> P(x|Ck ) P(Cy)

Introduce
Mixture p(x[Cy) Z p(x|j) P (JICk)-
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Prob RBF con'd
E£1 P(5|Ck)p(x|5) P(Ck) P(5)
>M pxl)PG)  PU)

P(Ckl|x) =

where

M
Z ;b5 (X P(j) = Y P(31Ci)P(Cy).

k

Basis function outputs: Posterior j Weights: Class probability
Feature probabilities given j™ Feature value
p(x|j)P(7) P(j|C)P(Ck)

¢j(x) — Z_, _,p(XIJ ) ( ) Wi = PU)

= P(j|x) = P(Cx|7)-
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Regularized Spline Fits

B-splines of Order 3

Given_
(X))
P =
(X))
Make a penalty on large curvature e
2 L=(y-®w) (y-®w)+ aw'Qw
o, J[ SR oo |
dx*
Minimize
L= (y - (IJW)T(y - (Dw) + 2w’ Qw
Solution

. : : ,
_ ((I)T(I>+ AQ) CI)Ty Generalized Ridge Regression
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Piecewise Polynomials and Splines

Piecewise Linear

Piecewise Constant

Piecewise-linear Basis Function

Continuous Piecewise Linear
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Piecewise Cubic Polynomials

Discontinuous Continuous

Cubic Spline Truncated Power Basis

17 X: Xza X37 (X_§1)3; (X_éz)?i_



B-splines of Order 1
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Ficure 5.17: The sequence of B-splines up to order
four with ten knots evenly spaced from 0 to 1. The
B-splines have local support; they are nonzero on an

interval spanned by M + 1 knots.



Equivalent Kernel

* Linear Regression solution admit a kernel

CSCI 5521

Interpretation
w=(0'0+2Q) @'y
Y e () = D)W = D) DD + 2Q) D'
Let (@'®+2Q) @ =S,d
Y prea (X) = () Y S,0(x,)y,
= ) D(x)S,p(x)y,
= ) K(x.x))y,
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Eigenanalysis and DF

» An eigenanalysis of the effective kernel gives the

CSCI 5521

effective degrees of freedom (DF), i.e. # of basis
functions

Evaluate K at all points
Kij = K(xia-xj)
Eigenanalysis

K=VDV'=USU"
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Equivalent Kernels

Equivalent
Basis N |
Functions = e —

F il Row 12 —]

50

75

100

115

FIGURE 5.8. The smoother matriz for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
g function in detail for the indicated rows.
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

Figure 3.10 The equivalent ker-

nel k(x,2") for the Gaussian basis \/\-/—v‘\/\/
functions in Figure 3.1, shown as -

a plot of x versus 2/, together with

three slices through this matrix cor-

responding to three different values
of 2. The data set used to generate

this kernel comprised 200 values of

x equally spaced over the interval
(—1,1). / N\

Figure 3.11 Examples of equiva-
lent kernels k(x.2') for = 0
plotted as a function of 2, corre-
sponding (left) to the polynomial ba-
sis functions and (right) to the sig- 0.02
moidal basis functions shown in Fig-
ure 3.1. Note that these are local- 0
ized functions of 2" even though the
corresponding basis functions are

nonlocal. —1 0 | -1 0 |
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Computing Error Bars on Predictions

* |tis important to be able to compute error bars on
linear regression predictions. We can do that by
propagating the error in the measured values to the
predicted values.

Given the Gram Matrix Simple Least squares
¢1(X1) ¢N (Xl) 1
b = w = ((I)T(I))_ (I)TSE
_¢1(XM) Py (XM )

-1 N ~
predictions  Ypra = Pw = (I)((I’T(I’) D'y = Sy
Error COV[y,,.q]=cov[Sy] = Scov[y]S' = S(/J’I)ST =SS’
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Fitted Natural Spline Model

« Each term 4 df (except
famhist)

 Pointwise standard error
curves

* Rugplot shows location
of x values
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g T : - Global Linsar
wme Slobal Cubic Polynomial a

o . e With y; = fleg) e
2] e; ~ iid (0,02)
> | ? ’
%: o
g S - varf(z) = h(z)T (HTH)~1h(z)o?

2 , | , , 4 (training data assumed fixed)

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 5.3: Pointwise variance curves for four differ-
ent models, with X consisting of 50 pownts drawn at
random from U[0, 1], and an assumed error model with
constant variance. The linear and cubic polynomial fits
have two and four degrees of freedom respectively. while
the cubic spline and natural cubic spline each have six
degrees of freedom. The cubic spline has two knots at
0.33 and 0.66, while the natural spline has boundary
Eknots at 0.1 and 0.9, and four interior knots uniformly

spaced between them.,
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Figure 5.6: The response is the relative change in bone
mineral density measured al the spie in adolescents,
as a function of age. A separate smoothing spline was

fit to the males and females, with A ~ 0,00022. This

cscrssay | Choice corresponds to about 12 degrees of freedom.



