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Radial Basis Function Networks
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Introduction
 In this lecture we will look at RBFs, networks where the

activation of hidden is based on the distance between
the input vector and a prototype vector

 Radial Basis Functions have a number of
interesting properties

• Strong connections to other disciplines
– function approximation, regularization theory, density estimation and

interpolation in the presence of noise [Bishop, 1995]
• RBFs allow for a straightforward interpretation of the

internal representation produced by the hidden layer
• RBFs have training algorithms that are significantly

faster than those for MLPs
• RBFs can be implemented as support vector machines
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Radial Basis Functions

• Discriminant function flexibility
–NON-Linear

•But with sets of linear parameters at each layer
•Provably general function approximators for sufficient nodes

• Error function
–Mixed- Different error criteria typically used for hidden vs.
output layers.

–Hidden:  Input approx.
–Output:  Training error

• Optimization
– Simple least squares - with hybrid training solution is
unique.
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Two layer Non-linear NN

Non-linear functions are radially symmetric ‘kernels’, with free
parameters
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Input to Hidden Mapping

• Each region of feature space by means of a radially symmetric
function
– Activation of a hidden unit is determined by the DISTANCE between the input

vector x and a prototype vector µ

• Choice of radial basis function
• Although several forms of radial basis may be used, Gaussian kernels are

most commonly used
– The Gaussian kernel may have a full-covariance structure, which requires D(D+3)/2

parameters to be learned

– or a diagonal structure, with only (D+1) independent parameters

In practice, a trade-off exists between using a small number of basis with many
parameters or a larger number of less flexible functions [Bishop, 1995]
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Builds up a function out of ‘Spheres’
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RBF vs. NN
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RBFs have their origins in techniques for
performing exact interpolation

These techniques place a basis function at each of
the training examples f(x)

and compute the coefficients wk so that the
“mixture model” has zero error at examples
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Formally:  Exact Interpolation
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Goal:  Find a function h(x), such that h(xi) = ti, 
for inputs xi and targets ti
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Solving conditions

• Micchelli’s Theorem: If the points xi are distinct, then the Φ
matrix will be nonsingular.

Mhaskar and Micchelli, Approximation by superposition of sigmoidal and radial basis functions,
Advances in Applied Mathematics,13, 350-373, 1992.
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Radial Basis function Networks
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Learning

 RBFs are commonly trained following a hybrid procedure
that operates in two stages

Unsupervised selection of RBF centers
– RBF centers are selected so as to match the distribution of training examples

in the input feature space
– This is the critical step in training, normally performed in a slow iterative

manner
– A number of strategies are used to solve this problem

• Supervised computation of output vectors
–  Hidden-to-output weight vectors are determined so as to minimize the sum-

squared
– error between the RBF outputs and the desired targets
– Since the outputs are linear, the optimal weights can be computed using fast,

linear
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Least squares solution for output weights
Given L input vectors xl, with labels tl
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Solving for input parameters
• Now we have a linear solution, if we know the input

parameters.  How do we set the input parameters?
– Gradient descent--like Back-prop
– Density estimation viewpoint: By looking at the meaning of

the RBF network for classification, the input parameters can
be estimated via density estimation and/or clustering
techniques

– We will skip these in lecture
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Unsupervised methods overview
• Random selection of centers

– The simplest approach is to randomly select a number of training examples as
RBF centers

– This method has the advantage of being very fast, but the network will likely require an
excessive number of centers

– Once the center positions have been selected, the spread parameters σj  can be
estimated, for instance, from the average distance between neighboring centers

•  Clustering
– Alternatively, RBF centers may be obtained with a clustering procedure such as

the k-means algorithm
 The spread parameters can be computed as before, or from the sample covariance

of the examples of each cluster
•  Density estimation

–  The position of the RB centers may also be obtained by modeling the feature
space density with a Gaussian Mixture Model using the Expectation- Maximization
algorithm

–  The spread parameters for each center are automatically obtained from the
covariance matrices of the corresponding Gaussian components
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Probabilistic Interpretion of RBFs for
Classification

=

Introduce
Mixture
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Prob RBF con’d

where

Basis function outputs:  Posterior jth

Feature probabilities
weights:  Class probability
given jth Feature value
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Regularized Spline Fits
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Equivalent Kernel

• Linear Regression solution admit a kernel
interpretation
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Eigenanalysis and DF

• An eigenanalysis of the effective kernel gives the
effective degrees of freedom (DF), i.e. # of basis
functions

! 

Evaluate K at all points

           K ij  = K(xi,x j )

Eigenanalysis

K =VDV
"1

=USU
T
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Equivalent
Basis

Functions
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Computing Error Bars on Predictions

• It is important to be able to compute error bars on
linear regression predictions.  We can do that by
propagating the error in the measured values to the
predicted values.
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