Regression Part |l

Note: Several slides taken from tutorial
by Bernard Scholkopf



Multi-class Classification

SVM is basically a two-class classifier

One can change the QP formulation to allow multi-
class classification

More commonly, the data set is divided into two parts
“intelligently” in different ways and a separate SVM is
trained for each way of division

Multi-class classification is done by combining the
output of all the SVM classifiers

— Majority rule

— Error correcting code

— Directed acyclic graph




Epsilon Support Vector Regression (e-SVR)

* Linear regression in feature space

* Unlike in least square regression, the error function is ¢
-insensitive loss function
— Intuitively, mistake less than ¢ is ignored

— This leads to sparsity similar to SVM
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Epsilon Support Vector Regression (e-SVR)

» Given: a data set {x,, ..., x.} with target values {u,, ...,
u.}, we want to do e-SVR

» The opt|m|zat|on problem Is

Min —||w||2 +C Z(€@+€@>
1=1

—wix; —b<e+¢
subject to {wix; +b—u; <e+ &

(

* Similar to SVM, this can be solved as a quadratic
programming problem



Epsilon Support Vector Regression (e-SVR)

» (C s a parameter to control the amount of influence of
the error

* The Y||w]||? term serves as controlling the complexity of
the regression function

— This is similar to ridge regression

» After training (solving the QP), we get values of o, and
o, , which are both zero if x; does not contribute to the
error function

* For anew data z. .
f(2) = > (ar; — i K (xy,2) +b
=1

J



SV Regression: c-Insensitive Loss [64]

Goal: generalize SV pattern recognition to regression, preserving
the following properties:

e formulate the algorithm for the linear case, and then use kernel
trick

e sparse representation of the solution in terms of SVs

e-Insensitive Loss:
[y — [(%)]z == max{0, |y — f(x)| — £}

Estimate a linear regression f(x) = (w,x) + b by minimizing

1 5 O
SIwI™+— > v — fxi)le
1=1

B. Schilkopf. Canbwara, Febrary 2002
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e-SV Regression Estimation [64]

CSCI 5521: Paul Schrater



Formulation as an Optimization Problem

Estimate a linear regression

f(x)={(w,x)+b
with precision € by minimizing
1 m
minimize  7(w,§,&%) = g|[wl’ +C) (& +&)
=1

—

subject to ((W,x;) +b) —y; < e+
yi — ((w,x) +0) < e+ &
&, & >0

forallz=1,...,m.
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Dual Problem, In Terms of Kernels

For C' > 0, > 0 chosen a priori,

m m

2,7=1
m
subject to 0 < ay,f <C, i=1,...,m, and Z(aQ
=1

The regression estimate takes the form

F) =" (af = ek, %) + b
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-SV Regression

We want to estimate the noise as well -
Introduce a parameter that bounds the noise and minimize

Primal problem: for 0 < v < 1, minimize

1, o -
T(W,e) = §||W||‘ +C | ve+1/m E [yi — F(x3)|e
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Duals, Using Kernels

C-SVM dual: maximize
1
W(a) = Zz G -3 i ;0 yiy ik (%, X 5)
subject to 0 < o; < C, > ayy; = 0.

-SVM dual: maximize

1
Wia) = =5 2, cicyiyik(xi, x;)
subject to 0 < q; < %, Yooy, =0, > o, > v

In both cases: decision function:
m
Fx) = sen (30 ovmik(x, %) +b)
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Soft Margin SVMs

C-SVM [15]: for C' > 0, minimize
1 m
m(w,€) = 5lIwll* + O;a,;
1=

subject to y; - ((W,x;) +b) >1—¢;, & > 0 (margin 2/||w]|)

v-SVM [55]: for 0 < v < 1, minimize
1 1
T<W7 Sap) — §||VV||2 —Vp+ _Zgz
"
subject to y; - ((W,Xj) +b) > p— &, & > 0 (margin 2p/||w]|)
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llustration

Cost function: %”W”Q + ve + ,7% (& + £¥)

CSCI 5521: Paul Schrater



The v-Property

Proposition 3 Assume e > 0. The following statements hold:
(i) v is an upper bound on the fraction of errors.
(it) v 1s a lower bound on the fraction of SVs.

(i11) Suppose the data were generated iid from a “well-behaved ™
distribution P(x,y). With probability 1, asymptotically, v
equals both the fraction of SVs and the fraction of errors.

* Essentially, P(x, y) = P(x)P(y|x) with P(y|x) continuous (some details omitted).
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-SV-Regression: Automatic Tube Tuning
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Identical machine parameters (v = 0.2), but different amounts of
noise in the data.
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e-SV-Regression, Run on the Same Data
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Identical machine parameters (¢ = 0.2), but different amounts of
noise in the data.
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Handling Heteroscedasticity

Assumption: we have prior knowledge indicating that the noise is
modulated by ((z) = sin?((27/3)z).

constant-radius tube parametric model using ((x)

CSCI 5521: Paul Schrater



Robustness of SV Regression

Proposition. Using SVR with |.|¢, local movements of target
values of points outside the tube do not change the estimated
regression.

Proof.

1. Shift g; locally — (x;, ;) still outside the tube — original dual solution
o) still feasible (oz,g*) = (, since all points outside the tube are at the
upper bound).

2. The primal solution, with &; transformed according to the movement, is also
feasible.

3. The KKT conditions are still satisfied, as still oz,g*) = (. Thus [5, e.g.], o™
15 still the optimal solution.
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The Representer Theorem

Theorem 4 Given: a p.d. kernel k on X X X, a training set

(21,11), - - -5 (Zm, Ym) € X XR, a strictly monotonic increasing
real-valued function Q on [0, 00|, and an arbitrary cost function
¢ (X xR - RU{oo}

Any [ € F minimizing the reqularized risk functional

c((@1, 91, f(@1)), - - (@my ym, flam) + QS B)

admits a representation of the form
m

FO) =) . k().
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More on Kernels

Mercer’s Theorem

If k 1s a continuous kernel of a positive definite integral oper-
ator on Lo(X) (where X is some compact space),

/ k(x, o) f(z)f(2)) dz dz’ > 0,
X

it can be expanded as
o0
k(z, ') = Nbi(a)g(a)
i=1

using eigenfunctions 1; and eigenvalues \; > 0 [41].
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The Mercer Feature Map

In that case
VU1 (x
(\/_U/) 1‘ )
satisfies (D(xz), D(2’)) = k(z, ).
Proof:
VA1 () VA (@
(), (")) < Vagpa(x) |, [ VAgthe(a’
=) Nthi(x)y k(o)



Positive Definite Kernels

It can be shown that (modulo some details) the admissible class
of kernels coincides with the one of positive definite (pd) kernels:
kernels which are symmetric, and for

e any set of training points 1, ..., Tm € X and
®any aj,...,am € R

satisfy
Za-ia’jKij > 0, where K;; == k(x;,z;).
1,]
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Elementary Properties of PD Kernels

Kernels from Feature Maps.
If & maps X into a dot product space H, then (®(z), &(z')) is a
pd kernel on X x X.

Positivity on the Diagonal.
k(x,z) > 0foralx € X

Cauchy-Schwarz Inequality.
k(z,2')? < k(z,z)k(z',2") (Hint: compute the determinant of
the Gram matrix)

Vanishing Diagonals.
k(z,z)=0forallz € X = k(z,2')=0forall 2,2’ € X
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The Feature Space for PD Kernels [4, 1, 48]

¢ define a feature map
O: X — RY
r = k(. x).

E.g., for the Gaussian kernel: /TD\

X x' d(x) D(x’)

Next steps:
e turn $(X) into a linear space

e endow it with a dot product satisfying
(Ko ), k(- ) = K2, 25)
e complete the space to get a reproducing kernel Hilbert space
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Endow it With a Dot Product

<f7 g> = Z Z a'iﬁjk(xi? xj)

=1 9=1

= > aiglz;) =) B;f(a})
1=1 7=1

e This is well-defined, symmetric, and bilinear.

e It can be shown that it is also strictly positive definite (hence
it is a dot product).

e Complete the space in the corresponding norm to get a Hilbert
space Hp..
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The Reproducing Kernel Property

Two special cases:

e Assume

In this case, we have

e [T moreover

we have the kernel trick

(k(.,2),k(.,2")) = k(z, 2.

k is called a reproducing kernel for Hj.
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Turn it Into a Linear Space

Form linear combinations

f(> — Z a'ik('? x'i)a
i=1

97=1

(m,m’ €N, a;, B € R, $i,$§- c X).
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The Reproducing Kernel Property

Two special cases:

e Assume

In this case, we have

e [f moreover

we have the kernel trick

(ko 2), k(. 7)) = k(z, 2.
k is called a reproducing kernel for Hj..
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Kernels

Recall that the dot product has to satisfy

For a Mercer kernel
Np
k(z,a") = 3 Ajwj(@)i;(a)
j=1

(with A; > 0 for all i, Np € NU {oo}, and (¢, wJ’>L2(X) = 0j),
this can be achieved by choosing {.,.) such that

(Vi sy = b5/ Mi-
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ctd.

To see this, compute
(k(z,.) <Z ithi(a wz,z,\ i
= Z/\ Ajebi ) ><w.z.,wj>
= ZA N jti()i(a’)ii /N

_ inwi(x)wz:(xﬁ

1
= k(x, ).



Some Properties of Kernels [53]

If k1, ko, ... are pd kernels, then so are

e ok, provided o« > 0

o L1+ ko

o fky-ko

o k(xz,2") := limp_s00 kn(x, '), provided it exists

¢ k(A,B) =3 ,cA/ep k1(z, o), where A, B are finite subsets
of X -
(using the feature map ®(A4) :=> .4 P(x))

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [28].
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Computing Distances in Feature Spaces

Clearly, if k is positive definite, then there exists a map @ such
that

|D(x) — <I>(:17/)||2 = k(z,z) + k(2 2") — 2k(z, 2

(it is the usual feature map).

This embedding is referred to as a Hilbert space representation
as a distance. It turns out that this works for a larger class of
kernels, called conditionally positive definite.

In fact, all algorithms that are translationally invariant (i.e. inde-
pendent of the choice of the origin) in H work with ¢pd kernels
[53].
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