Regression Part II

Note: Several slides taken from tutorial by Bernard Schölkopf
Multi-class Classification

• SVM is basically a two-class classifier
• One can change the QP formulation to allow multi-class classification
• More commonly, the data set is divided into two parts “intelligently” in different ways and a separate SVM is trained for each way of division
• Multi-class classification is done by combining the output of all the SVM classifiers
 – Majority rule
 – Error correcting code
 – Directed acyclic graph
Epsilon Support Vector Regression (ε-SVR)

- Linear regression in feature space
- Unlike in least square regression, the error function is ε-insensitive loss function
 - Intuitively, mistake less than ε is ignored
 - This leads to sparsity similar to SVM

\[\begin{align*}
\varepsilon\text{-insensitive loss function} & \quad \text{Square loss function} \\
\text{Penalty} & \\
-\varepsilon & \quad \varepsilon \\
\text{Value off target} & \\
\end{align*}\]
Epsilon Support Vector Regression (\(\varepsilon\)-SVR)

- Given: a data set \(\{x_1, \ldots, x_n\}\) with target values \(\{u_1, \ldots, u_n\}\), we want to do \(\varepsilon\)-SVR

- The optimization problem is

\[
\text{Min} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*)
\]

subject to

\[
\begin{align*}
 u_i - w^T x_i - b & \leq \varepsilon + \xi_i \\
 w^T x_i + b - u_i & \leq \varepsilon + \xi_i^* \\
 \xi_i & \geq 0, \; \xi_i^* & \geq 0
\end{align*}
\]

- Similar to SVM, this can be solved as a quadratic programming problem
Epsilon Support Vector Regression (ε-SVR)

- C is a parameter to control the amount of influence of the error.
- The $\frac{1}{2}||w||^2$ term serves as controlling the complexity of the regression function
 - This is similar to ridge regression.
- After training (solving the QP), we get values of α_i and α_i^*, which are both zero if x_i does not contribute to the error function.
- For a new data z.

$$f(z) = \sum_{j=1}^{s} (\alpha_{t,j} - \alpha_{t,j}^*) K(x_{t,j}, z) + b$$
SV Regression: ε-Insensitive Loss

Goal: generalize SV pattern recognition to regression, preserving the following properties:

- formulate the algorithm for the linear case, and then use kernel trick
- sparse representation of the solution in terms of SVs

ε-Insensitive Loss:

$$|y - f(x)|_\varepsilon := \max\{0, |y - f(x)| - \varepsilon\}$$

Estimate a linear regression $$f(x) = \langle w, x \rangle + b$$ by minimizing

$$\frac{1}{2}\|w\|^2 + \frac{C}{m} \sum_{i=1}^{m} |y_i - f(x_i)|_\varepsilon.$$
Formulation as an Optimization Problem

Estimate a linear regression

\[f(x) = \langle w, x \rangle + b \]

with precision \(\varepsilon \) by minimizing

\[
\begin{align*}
\text{minimize} & \quad \tau(w, \xi, \xi^*) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) \\
\text{subject to} & \quad (\langle w, x_i \rangle + b) - y_i \leq \varepsilon + \xi_i \\
& \quad y_i - (\langle w, x_i \rangle + b) \leq \varepsilon + \xi_i^* \\
& \quad \xi_i, \xi_i^* \geq 0
\end{align*}
\]

for all \(i = 1, \ldots, m \).
Dual Problem, In Terms of Kernels

For $C > 0, \varepsilon \geq 0$ chosen a priori,

$$\text{maximize} \quad W(\alpha, \alpha^*) = -\varepsilon \sum_{i=1}^{m} (\alpha_i^* + \alpha_i) + \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) y_i$$

$$- \frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i^* - \alpha_i)(\alpha_j^* - \alpha_j) k(x_i, x_j)$$

subject to $0 \leq \alpha_i, \alpha_i^* \leq C$, $i = 1, \ldots, m$, and $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$.

The regression estimate takes the form

$$f(x) = \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) k(x_i, x) + b,$$
\(\nu \)-SV Regression

We want to estimate the noise as well -

Introduce a parameter that bounds the noise and minimize

Primal problem: for \(0 \leq \nu \leq 1 \), minimize

\[
\tau(w, \varepsilon) = \frac{1}{2} \|w\|^2 + C \left(\nu \varepsilon + \frac{1}{m} \sum_{i=1}^{m} |y_i - f(x_i)|_{\varepsilon} \right)
\]
C-SVM dual: maximize

\[W(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \]

subject to \(0 \leq \alpha_i \leq C \), \(\sum_i \alpha_i y_i = 0 \).

\(\nu \)-SVM dual: maximize

\[W(\alpha) = -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \]

subject to \(0 \leq \alpha_i \leq \frac{1}{m} \), \(\sum_i \alpha_i y_i = 0 \), \(\sum_i \alpha_i \geq \nu \)

In both cases: decision function:

\[f(x) = \text{sgn} \left(\sum_{i=1}^m \alpha_i y_i k(x, x_i) + b \right) \]
Soft Margin SVMs

C-SVM [15]: for $C > 0$, minimize

$$
\tau(w, \xi) = \frac{1}{2}\|w\|^2 + C \sum_{i=1}^{m} \xi_i
$$

subject to $y_i \cdot (\langle w, x_i \rangle + b) \geq 1 - \xi_i, \quad \xi_i \geq 0$ (margin $2/\|w\|$)

ν-SVM [55]: for $0 \leq \nu < 1$, minimize

$$
\tau(w, \xi, \rho) = \frac{1}{2}\|w\|^2 - \nu \rho + \frac{1}{m} \sum_{i} \xi_i
$$

subject to $y_i \cdot (\langle w, x_i \rangle + b) \geq \rho - \xi_i, \quad \xi_i \geq 0$ (margin $2\rho/\|w\|$)
Cost function: \(\frac{1}{2C} \| \mathbf{w} \|^2 + \nu \varepsilon + \frac{1}{m} \sum_{i=1}^{m} (\xi_i + \xi_i^*) \)
The ν-Property

Proposition 3 Assume $\varepsilon > 0$. The following statements hold:

(i) ν is an upper bound on the fraction of errors.

(ii) ν is a lower bound on the fraction of SVs.

(iii) Suppose the data were generated iid from a 'well-behaved' distribution $P(x, y)$. With probability 1, asymptotically, ν equals both the fraction of SVs and the fraction of errors.

* Essentially, $P(x, y) = P(x)P(y|x)$ with $P(y|x)$ continuous (some details omitted).
\textit{Identical} machine parameters ($\nu = 0.2$), but different amounts of noise in the data.
ε-SV-Regression, Run on the Same Data

Identical machine parameters ($\varepsilon = 0.2$), but different amounts of noise in the data.
Handling Heteroscedasticity

Assumption: we have prior knowledge indicating that the noise is modulated by $\zeta(x) = \sin^2((2\pi/3)x)$.

constant-radius tube

parametric model using $\zeta(x)$
Robustness of SV Regression

Proposition. Using SVR with \(|.|_\varepsilon\), local movements of target values of points outside the tube do not change the estimated regression.

Proof.

1. Shift \(y_i \) locally \(\rightarrow (x_i, y_i) \) still outside the tube \(\rightarrow \) original dual solution \(\alpha_i^{(*)} \) still feasible (\(\alpha_i^{(*)} = C \), since all points outside the tube are at the upper bound).

2. The primal solution, with \(\xi_i \) transformed according to the movement, is also feasible.

3. The KKT conditions are still satisfied, as still \(\alpha_i^{(*)} = C \). Thus [5, e.g.], \(\alpha^{(*)} \) is still the optimal solution.
The Representer Theorem

Theorem 4 Given: a p.d. kernel k on $\mathcal{X} \times \mathcal{X}$, a training set $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$, a strictly monotonic increasing real-valued function Ω on $[0, \infty[$, and an arbitrary cost function $c : (\mathcal{X} \times \mathbb{R}^2)^m \rightarrow \mathbb{R} \cup \{\infty\}$

Any $f \in \mathcal{F}$ minimizing the regularized risk functional

$$c((x_1, y_1, f(x_1)), \ldots, (x_m, y_m, f(x_m))) + \Omega(\|f\|) \quad (3)$$

admits a representation of the form

$$f(.) = \sum_{i=1}^{m} \alpha_i k(x_i, .).$$
More on Kernels

Mercer’s Theorem

If \(k \) is a continuous kernel of a positive definite integral operator on \(L^2(\mathcal{X}) \) (where \(\mathcal{X} \) is some compact space),

\[
\int_{\mathcal{X}} k(x, x') f(x) f(x') \, dx \, dx' \geq 0,
\]

it can be expanded as

\[
k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')
\]

using eigenfunctions \(\psi_i \) and eigenvalues \(\lambda_i \geq 0 \) [41].
The Mercer Feature Map

In that case

\[
\Phi(x) := \begin{pmatrix}
\sqrt{\lambda_1}\psi_1(x) \\
\sqrt{\lambda_2}\psi_2(x) \\
\vdots
\end{pmatrix}
\]

satisfies \(\langle \Phi(x), \Phi(x') \rangle = k(x, x') \).

Proof:

\[
\langle \Phi(x), \Phi(x') \rangle = \left\langle \begin{pmatrix}
\sqrt{\lambda_1}\psi_1(x) \\
\sqrt{\lambda_2}\psi_2(x) \\
\vdots
\end{pmatrix}, \begin{pmatrix}
\sqrt{\lambda_1}\psi_1(x') \\
\sqrt{\lambda_2}\psi_2(x') \\
\vdots
\end{pmatrix} \right\rangle
\]

\[
= \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x') = k(x, x')
\]
Positive Definite Kernels

It can be shown that (modulo some details) the admissible class of kernels coincides with the one of positive definite (pd) kernels: kernels which are symmetric, and for

- any set of training points \(x_1, \ldots, x_m \in \mathcal{X} \) and
- any \(a_1, \ldots, a_m \in \mathbb{R} \)

satisfy

\[
\sum_{i,j} a_i a_j K_{ij} \geq 0, \quad \text{where } K_{ij} := k(x_i, x_j).
\]
Elementary Properties of PD Kernels

Kernels from Feature Maps.
If Φ maps \mathcal{X} into a dot product space \mathcal{H}, then $\langle \Phi(x), \Phi(x') \rangle$ is a pd kernel on $\mathcal{X} \times \mathcal{X}$.

Positivity on the Diagonal.
$k(x, x) \geq 0$ for all $x \in \mathcal{X}$

Cauchy-Schwarz Inequality.
$k(x, x')^2 \leq k(x, x)k(x', x')$ (Hint: compute the determinant of the Gram matrix)

Vanishing Diagonals.
$k(x, x) = 0$ for all $x \in \mathcal{X} \implies k(x, x') = 0$ for all $x, x' \in \mathcal{X}$
The Feature Space for PD Kernels

- define a feature map

\[\Phi : \mathcal{X} \rightarrow \mathbb{R}^{\mathcal{X}} \]
\[x \mapsto k(., x). \]

E.g., for the Gaussian kernel:

Next steps:
- turn \(\Phi(\mathcal{X}) \) into a linear space
- endow it with a dot product satisfying
 \[\langle k(., x_i), k(., x_j) \rangle = k(x_i, x_j) \]
- complete the space to get a reproducing kernel Hilbert space
Endow it With a Dot Product

\[\langle f, g \rangle := \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j) \]

\[= \sum_{i=1}^{m} \alpha_i g(x_i) = \sum_{j=1}^{m'} \beta_j f(x'_j) \]

- This is well-defined, symmetric, and bilinear.
- It can be shown that it is also strictly positive definite (hence it is a dot product).
- Complete the space in the corresponding norm to get a Hilbert space \(\mathcal{H}_k \).
The Reproducing Kernel Property

Two special cases:

- Assume

 \[f(\cdot) = k(\cdot, x). \]

 In this case, we have

 \[\langle k(\cdot, x), g \rangle = g(x). \]

- If moreover

 \[g(\cdot) = k(\cdot, x'). \]

 we have the kernel trick

 \[\langle k(\cdot, x), k(\cdot, x') \rangle = k(x, x'). \]

 \(k \) is called a reproducing kernel for \(\mathcal{H}_k \).
Turn it Into a Linear Space

Form linear combinations

\[f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i), \]

\[g(.) = \sum_{j=1}^{m'} \beta_j k(., x'_j) \]

\((m, m' \in \mathbb{N}, \alpha_i, \beta_j \in \mathbb{R}, x_i, x'_j \in \mathcal{X})\).
The Reproducing Kernel Property

Two special cases:

- Assume
 \[f(\cdot) = k(\cdot, x). \]

 In this case, we have
 \[\langle k(\cdot, x), g \rangle = g(x). \]

- If moreover
 \[g(\cdot) = k(\cdot, x'), \]

 we have the kernel trick
 \[\langle k(\cdot, x), k(\cdot, x') \rangle = k(x, x'). \]

\(k \) is called a reproducing kernel for \(\mathcal{H}_k \).
Kernels

Recall that the dot product has to satisfy
\[\langle k(x, .), k(x', .) \rangle = k(x, x'). \]

For a Mercer kernel
\[k(x, x') = \sum_{j=1}^{N_F} \lambda_j \psi_j(x) \psi_j(x') \]
(with \(\lambda_i > 0 \) for all \(i \), \(N_F \in \mathbb{N} \cup \{\infty\} \), and \(\langle \psi_i, \psi_j \rangle_{L^2(X')} = \delta_{i,j} \)),
this can be achieved by choosing \(\langle ., . \rangle \) such that
\[\langle \psi_i, \psi_j \rangle = \delta_{i,j} / \lambda_i. \]
To see this, compute
\[
\langle k(x, .), k(x', .) \rangle = \left\langle \sum_i \lambda_i \psi_i(x) \psi_i, \sum_j \lambda_j \psi_j(x') \psi_j \right\rangle \\
= \sum_{i,j} \lambda_i \lambda_j \psi_i(x) \psi_j(x') \langle \psi_i, \psi_j \rangle \\
= \sum_{i,j} \lambda_i \lambda_j \psi_i(x) \psi_j(x') \delta_{ij} / \lambda_i \\
= \sum_i \lambda_i \psi_i(x) \psi_i(x') \\
= k(x, x').
\]
Some Properties of Kernels [53]

If k_1, k_2, \ldots are pd kernels, then so are

- αk_1, provided $\alpha \geq 0$
- $k_1 + k_2$
- $k_1 \cdot k_2$
- $k(x, x') := \lim_{n \to \infty} k_n(x, x')$, provided it exists
- $k(A, B) := \sum_{x \in A, x' \in B} k_1(x, x')$, where A, B are finite subsets of \mathcal{X}

 (using the feature map $\tilde{\Phi}(A) := \sum_{x \in A} \Phi(x)$)

Further operations to construct kernels from kernels: tensor products, direct sums, convolutions [28].
Computing Distances in Feature Spaces

Clearly, if k is positive definite, then there exists a map Φ such that

$$\|\Phi(x) - \Phi(x')\|^2 = k(x, x) + k(x', x') - 2k(x, x')$$

(it is the usual feature map).

This embedding is referred to as a *Hilbert space representation* as a distance. It turns out that this works for a larger class of kernels, called *conditionally positive definite*.

In fact, all algorithms that are translationally invariant (i.e. independent of the choice of the origin) in \mathcal{H} work with cpd kernels [53].