Logistic Regression

e Discriminant functions:
g, (x) = g(w'x) go(x)=1-g(w'x)
« Where g(2)=1/(1+e") _jsalogistic function
* Values of discriminant functions vary in [0,1]
— Probabilistic interpretation

f(x,w)=p(y=1|w,x)= g, (x)=g(W'x)
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Logistic Trick

Plot of the logistic sigmoid function
o(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function ®(\a), for \* = /8,
shown in dashed blue, where ®(a)
is defined by (4.114). The scal-

ing factor 7 /8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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Posterior Probability For Two Classes

p(x/C1)p(C:)
p(x|cll)P(Cl) + p(x|C2)p(C2) - p(x|C1)p(Cy)
o1+ exp(—a) =o(a) P(X\CQ)P(Cz)

p(Cix) =




Logistic Regression

» Discriminative learning of Posterior
probabilities

— we learn a probabilistic function
f: X— [0,1]
where f is the probability of class 1 given x:

SxwW)=p(y=1]x,w)]

Two class case gives the decision rule:

If p(y=1|x)=>1/2 then choosel
Else choose 0




Logistic decision boundary

* Logistic regression model defines a linear decision boundary
* Why?

* Answer: Compare two discriminant functions.

* Decision boundary: g (x)=g,(x)

* For the boundary 1t must hold:

. T
log g, (x) :10g1 g(\: X) _ 0o
g, (x) g(W'x)
exp— (W' X)
T
log & () _ log L+exp—(W X) _ logexp—(W'x)=w'x=0

g,(x) L
1+ exp—(w'x)




Likelihood of data

Likelihood of data
e Let

Di =< X, )V 2 ,uz.=p(yi=1|xi,w)=g(zi)=g(w}"x)
* Then

L(D,W)ZH P(y=y, |X.:':w):1—[ﬂfyi(l_ﬂf)l_yi
i=1 i=1

. * Find weights w that maximize the likelihood of outputs
— Apply the log-likelihood trick The optimal weights are the
same for both the likelthood and the log-likelthood

I(D,w)=log [ w.” A=p) 7 =D logu,” (1—p)' ™ =
i=1 i=1

= Z yilogu,+(1-y;)log(1-u,;)

i=1



* Log likelihood
[(D,w)=) y,logu,+(1-y,)log(1-p,) |

L i=l

(D)= Yy, log f(x,.w)+(1-y log(1- £ (x,.W))
 Gradient 1

n

VWZ(D,W)=—2xi(yi—f(xi,w))

=1

* Gradient descent:

w e w —a (B)V  [-1(D,W)]] )

wh e wE v a (k) [y, — f(w 0, x)x,
i=1



Linear Regression

Linear regression Logistic regression
f(x) w'x f(x)—p(yzllxw):g(wa)
f (x)=
f () p( y=1|x)
) /
Gradient uPdate: Gradient update:

Online: yy ¢— wjra( y—f(xX))x Online: wy ¢—w+a(y— f(X))x

wewa) (5, @)K Thesame  we wia> (- /)



Simple Gradient

* The same simple gradient update rule derived for both the
linear and logistic regression models

* Where the magic comes from?

* Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise

y=w'x+¢ ¢€~N(0,0?%)

— Logistic + Bernoulli

y = Bernoulli(@)

0 =p(y=1|x)=g(w'x)




An algorithm

Online-logistic-regression (D, number of iterations)
initialize weights w=(w,,w,w,...w,)
for i=1:1: number of iterations
do select a data point D; =<X;,¥; > from D
set a=1/i
update weights (in parallel)
we wra(@)l[y, - f(w,x)]x,
end for

return weights w



Logistic Trick

Plot of the logistic sigmoid function
o(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function ®(\a), for \* = /8,
shown in dashed blue, where ®(a)
is defined by (4.114). The scal-

ing factor 7 /8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

0.5

Posterior Probability For Two Classes

p(x/C1)p(C:)
p(x|cll)P(Cl) + p(x|C2)p(C2) - p(x|C1)p(Cy)
o1+ exp(—a) =o(a) P(X\CQ)P(Cz)

p(Cix) =




MultiClass

p(x|Cr)p(Ck)
2 p(x|C;)p(C;)
exp(ag)

Zj exp(a;)

p(Cklx) =

ar = In p(x|Cx)p(Ck)
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas

those between the other pairs of classes are quadratic.



Example: Gaussians
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Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C, |x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C:|x) and a
proportion of blue ink given by p(Cz|x) = 1 — p(C:|x).
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Multiway Classification

+ =
" * %
-n-* *
W *
* #
£+ * +
++ A *
¥ -
¥ 4 4 '
A N
* 4 & +*+*# +
£ * *% +
#
. +* *
% . ¥ ﬁ' * *
* +
L T ¥
s e +
+ +
# *JF +
* 4 L
.+ + + ¥
. + & * - 'F(
- * i
¥ Fa ¥
m + !*_-*_H-F‘_*'{*- *
" * ﬁ**j}x ¥
¥ T ;-*,134**
- ¥ 2
. T Vg # 4
+ _-+ _:+_:-c
+




One approach

1 vs {0,2}




One approach
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Correct Approach




softmax




Learning a Softmax Network

* Learning of parameters w: statistical view

Ho=P(y=0|x)
X : Y
Softmax °©o o Mult: wvay
network U, =Ply=k-1[x) X Coin toss

Assume outputs y are

transformed as follows (1) (0 0|

0 |1 0
ye{0 1 . k-1} o=mp ye 4 . b

\0) 0, 1)




Learning multi-class

» Learning of the parameters w: statistical view

* Likelihood of outputs
L(D,w)=pX|X;w) =[] p(,|x,,W)

i=l,..n

* We want parameters w that maximize the likelihood
Log-likelihood trick
— Optimize log likelihood of outputs instead:

I(D,w)=log] | p(,|x,w) = ) logp(y; | x,W)

i=l,.n i=l,.n
k-1 | k-1
= Z Zloguiyi,fi‘ = Z ny,q logﬂf,q
i=1,..n g=0 i=1,..n g=0
* Objective to optimize n k-l

J(DI-,W) = _Z Z Yig 10g H;,

i=1 g=0



Learning multi-class

* Error to optimize:

H

k—1
J(D,w)=-> > v logpu,,
'—1 q:(}

e Gradient

=

0
J(D.,w)= —x. (y..—u. .
aw}k ( i ) — ;”r(y;,j ﬂ;ur)

* The same very easy gradient update as used for the binary
logistic regression

H
wj < wj +(ZZ (y.f,j_;ui,j)xf
i=1

* But now we have to update the weights of k networks



Exponential Family

f(x10,0)= h(x,{p)exp%‘* x=AQ) |

a()

0 - A location parameter @ - A scale parameter

Claim: A logistic regression 1s a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

All but the linear part cancels in the posterior
probabilities



Logistic and Exponential Family

 (lass conditional:

p(x|y=10)= h(x,(l))exp%(ef Xa_(;l)(ﬁf))}

* Class posterior:
p(x|y=0p(y =i
2. p(xly=jp(y=))

h(x,0) exp%“’f e f)(“f))}p(y ~ i)

- ((07x— 4(0 )
k ] J J
; (x (P)expﬁ ()

w - 0, b_:A(ﬂf)
a(o)

ply=il|x)=

exp(w; x+b.)

}p(y _ B Z exp(W X +b))
| J

+1n p(y =1i)

1



When is it right?

* Softmax model is an accurate model when class anditional
densities are represented with densities from the exponential
family with the same scaling parameter

* For two classes it reduces to the logistic regression model

X K TP(y =0]x)
— | Softmax e o
network U, ,=P(y=k-1|x)
. [, (07x-5(0,))
p(x|y=i)= ewi +c(X,9)
a(Q)

0. - location parameter for class @nditional i

¢ - scaling parameter (the same for all classes)



Bayesian Treatment

Need posterior on weights-
Combine likelihood with prior
Then approximate the predictive distribution:

I(WTX)Q(W)

p(C\‘D,X)= f p(c\‘w,x) p(W‘D)sz f dw

I+exp



