
Nomenclature
• Given x1, x2,…, xn sample points, with true category labels:

y1, y2,…,yn

• Decision are made according to:

• Now these decisions are wrong when wtxi is negative and
belongs to class ω1.
Let zi = αi xi Then zi >0 when correctly labelled,
negative otherwise.!

if w
t
x
i

'
= w

t
xi + b > 0 class "

1
 is chosen

if w
t
x
i

'
= w

t
xi + b < 0 class "

2
 is chosen!

yi =1
yi = "1

$
%

if point xi is from class &1

if point xi is from class &2

Support Vector Machines
• Support vector machines differ from standard

linear machines in three ways.
• Discriminant function flexibility

– Linear
• But with nonlinear preprocessing possible
• efficient evaluation via kernel trick

• Error function
– Max margin, constrained by misclassification errors

• Optimization
– Choice of error function allows global solution
– Nature of solution focuses on points on points on

margin (the support vectors)

– In conclusion, a linear discriminant function divides
the feature space by a hyperplane decision surface

– The orientation of the surface is determined by the
normal vector w and the location of the surface is
determined by the bias

!

x = xp +
rw

w

since g(xp) = 0 and wtw = w
2

g(x) = w
t
x + w0 " w

t
xp +

rw

w

$
%

&

'
(+ w0

= g(xp) + w
t
w

r

w

 " r =
g(x)

w

in particular d([0,0],H) =
w 0

w

H

w

x

xtw

r

xp

Margins in data space

b

Larger margins promote uniqueness for
underconstrained problems

Constrained Optimization Problems
Minimize enforcing Equality Constraints
Find: such that

 Lagrange Multiplier

!

r
x
*

=
r
x
min

!

h(
r
x
*
)=0

),(min 21 xxf

!

s.t. h(x
1
,x

2
) = 0

),(),(),,(212121 xxhxxfxxL !! += !!
"

#
$$
%

&

multiplierLagrange

funcLagrangeL

:

:

'

0
),(),(),(

0
),(),(),(

2

*

2

*

1

2

*

2

*

1

2

*

2

*

1

1

*

2

*

1

1

*

2

*

1

1

*

2

*

1

=
!

!
+

!

!
=

!

!

=
!

!
+

!

!
=

!

!

x

xxf

x

xxf

x

xxL

x

xxf

x

xxf

x

xxL

"

"

 At the candidate minimum point, gradients of the cost and
constraint func are along the same line.

(In other words, is a linear combination of

Therefore constrained optimization is converted to unconstrained
optimization.

!

"L(x
*
) = "f (x

*
) + #"h(x*) = 0

"f (x
*
) = $# "h(x*) geometrical meaning

!

"f

!

"L(x
*
,# *) = 0!

L(x,") = f (x) +" T
h(x)

!

"h

• The "Milkmaid problem"
• It's milking time at the farm, and the

milkmaid has been sent to the field to get
the day's milk. She is in quite a hurry,
because she has a date, so she wants to
finish her job as quickly as possible.
However, before she gathers the milk,
she has to rinse out her bucket in the
nearby river.

• Just when she reaches point M, our
heroine spots the cow, at point C. She is
in a hurry, so she wants to take the
shortest possible path from where she is
to the river and then to the cow. If the
near bank of the river is a curve
satisfying the function g(x,y) = 0, what is
the shortest path for the milkmaid to
take? (Assume that the field is flat and
uniform and that all points on the river
bank are equally good.)

• Problem:
• Minimize f(P) = d(M,P) + d(P,C),

– such that g(P) = 0.

F(P,α) = f(P) - α g(P).

!

"F = 0
#f

#P
+$

#g

#P
= 0

#F

#$
= 0 % g(P) = 0

h(w)

Kuhn-Tucker
Example

Consider the problem

!

min f (
r
x) = (x1 " 4)

2 + (x2 " 4)
2{ },

such that

g1(
r
x) = x1 + x2 # 6 and

g2(
r
x) = x1 + 3x2 # 4

We form a new function for minimization :

L(
r
x) = f (

r
x) + $1g1(

r
x) + $ 2g2(

r
x)

L(
r
x) = (x1 " 4)

2 + (x2 " 4)
2 + $1(x1 + x2 " 6) + $ 2(x1 + 3x2 " 4)

!

The Kuhn - Tucker conditions are :

"L(
r
x) = 0, # i $ 0, # igi(

r
x) = 0

What do the
multipliers do?

ν1=0, ν2=0 ν1=5, ν2=0 ν1=10, ν2=0
Circles: L(x)=c

Adding constraint shifts L(x)
in direction of constraint normal

!

x1 = -("1 +" 2) /2 + 4

x2 = -("1 + 3" 2) /2 + 4

Plugging in :

"1(-("1 +" 2) /2 + 4 +

- ("1 + 3" 2) /2 + 4 # 6) = 0

$"1 = 0 or "1 = 2 # 2" 2

" 2(-("1 +" 2) /2 + 4 +

3(-("1 + 3" 2) /2 + 4) # 4) = 0

" 2 = 0, "1 = (12 # 5" 2) /2

if "1 = 0

" 2 =12 /5

if "1 = 2 # 2" 2

" 2 = 8

but if " 2 = 0

$"1 = 2

Solve for x in terms of ν1, ν2
Then substitute and solve for
ν1, ν2

!

"L(
r
x) =

#L(
r
x)

#x1

= 2(x1 - 4) +$1 +$ 2 = 0

#L(
r
x)

#x2

= 2(x2 - 4) +$1 + 3$ 2 = 0

#L(
r
x)

#$1
= (x1 + x2 % 6) & 0

#L(
r
x)

#$ 2
= (x1 + 3x2 % 4) & 0

'

(

)
)
)
)
)
)
)
)
)

*

+

,
,
,
,
,
,
,
,
,

$1 - 0

$ 2 - 0

$1(x1 + x2 % 6) = 0

$ 2(x1 + 3x2 % 4) = 0

Kuhn-Tucker conditions:

Now solve SVM problem

Now solve SVM problem

Kernel trick
!

"L

"w
0

$
%

&

'
(

The Kernel Trick, N=2, d=2

• Thus the dot product in the non-linear feature space can
be computed in 2 via the kernel function.

!

!

"(
r
x) = x

1

2
, 2x

1
x

2
, x

2

2[]

(< x,z >)
2 = (x

1
z

1
+ x

2
z

2
)

2

 = (x
1

2
z

1

2 + 2x
1
z

1
x

2
z

2
+ x

2

2
z

2

2
)

 = [x
1

2
, 2x

1
x

2
,x

2

2
],[z

1

2
, 2z

1
z

2
,z

2

2
]

 = "(
r
x),"(

r
z)

 = K
r
x ,

r
z ()

!

"

 Simple example (XOR problem)

!

K(x,x
i
) = (1+ x

T
x
i
)
2

=1+ x
1

2
x
i1

2
+ 2x

1
x
i1
x
2
x
i2

+ x
2

2
x
i2

2
+ 2x

1
x
i1

+ 2x
2
x
i2

T
xxxxxxx]2,2,,2,,1[)(21

2

221

2

1=!

!

K =

9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9

"

$
$
$

%

&

'
'
'

1
Input vec. y
[-1,-1] -1

[-1,+1] +1

[+1,-1] +1

[+1,+1] -1

!

"(w) = 1

2
w
T
w

L(w,b,#) = 1

2
w
T
w $ # i[yi(w

T
xi + b) $1]

i=1

N

%

Q(#) = # i

i=1

N

% $ 1

2
i# j yiy j&(xi)

T&(x j)
j=1

N

%
i=1

N

%

Q(#) = # i

i=1

N

% $ 1

2
i# j yiy jK xi,x j()

j=1

N

%
i=1

N

%
-1 1

K evaluated for
all pairs of inputs:

-1

Simple example(cont.)

!

Q(") ="
1

+"
2

+"
3

+"
4

1

2
(9"

1

2
2"

1
"
2
2"

1
"
3

+ 2"
1
+ 9"

2

2

+ 2"
2
"
3
2"

2
"
4

+ 9"
3

2
2"

3
"
4

+ 9"
2

4
)

19

19

19

19

4321

4321

4321

4321

=+!!

=!++!

=!++!

=+!!

""""

""""

""""

""""
4
1

8
1

4,3,2,1,

)(=

====

!

!!!!

o

oooo

Q Four Input vectors are
All support vectors

2

1
4
1

2

2
1 , ==

oo
ww

!

wo = " iyi#(xi)
i=1

N

$

Dual formulation

