
Nomenclature
• Given x1, x2,…, xn sample points, with true category labels:

y1, y2,…,yn

• Decision are made according to:

• Now these decisions are wrong when wtxi is negative and
belongs to class ω1.
Let zi = αi xi                Then zi  >0 when correctly labelled,
negative otherwise.! 

if w
t
x
i

'
= w

t
xi + b > 0    class "

1
 is chosen

if w
t
x
i

'
= w

t
xi + b < 0    class "

2
 is chosen! 

yi =1
yi = "1

# 
$ 
% 

if point xi is from class &1

if point xi is from class &2



Support Vector Machines
• Support vector machines differ from standard

linear machines in three ways.
• Discriminant function flexibility

– Linear
• But with nonlinear preprocessing possible
• efficient evaluation via kernel trick

• Error function
– Max margin, constrained by misclassification errors

• Optimization
– Choice of error function allows global solution
– Nature of solution focuses on points on points on

margin (the support vectors)



– In conclusion, a linear discriminant function divides
the feature space by a hyperplane decision surface

– The orientation of the surface is determined by the
normal vector w and the location of the surface is
determined by the bias
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Margins in data space

b

Larger margins promote uniqueness for
underconstrained problems







Constrained Optimization Problems
Minimize enforcing Equality Constraints
Find:   such that

 Lagrange Multiplier
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 At the candidate minimum point, gradients of the cost and
constraint func are along the same line.

(In other words,         is a linear combination of

Therefore constrained optimization is converted to unconstrained
optimization.
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• The "Milkmaid problem"
• It's milking time at the farm, and the

milkmaid has been sent to the field to get
the day's milk. She is in quite a hurry,
because she has a date, so she wants to
finish her job as quickly as possible.
However, before she gathers the milk,
she has to rinse out her bucket in the
nearby river.

• Just when she reaches point M, our
heroine spots the cow, at point C. She is
in a hurry, so she wants to take the
shortest possible path from where she is
to the river and then to the cow. If the
near bank of the river is a curve
satisfying the function g(x,y) = 0, what is
the shortest path for the milkmaid to
take? (Assume that the field is flat and
uniform and that all points on the river
bank are equally good.)



• Problem:
• Minimize f(P) = d(M,P) + d(P,C),

– such that g(P) = 0.

F(P,α) = f(P) -  α g(P).
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Kuhn-Tucker
Example

Consider the problem
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The Kuhn - Tucker conditions are :
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What do the 
multipliers do?

ν1=0, ν2=0 ν1=5, ν2=0 ν1=10, ν2=0
Circles: L(x)=c

Adding constraint shifts L(x) 
in direction of constraint normal
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x1 = -("1 +" 2) /2 + 4

x2 = -("1 + 3" 2) /2 + 4

Plugging in :
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Now solve SVM problem



Now solve SVM problem

Kernel trick
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The Kernel Trick, N=2, d=2

• Thus the dot product in the non-linear feature space can
be computed in     2 via the kernel function.
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 Simple example (XOR problem)
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Simple example(cont.)
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