Nomenclature

* Given x,, x,,..., x, sample points, with true category labels:

y], y2" ) .,yn . . .
y. =1 }1f point x; 1s from class w,
l
Y; =—1]if point x, is from class w,

e Decision are made according to:
if wx.=w'x,+b>0 class w, is chosen

if wx,=w'x. +b<0 class w, is chosen

e Now these decisions are wrong when w'x; is negative and
belongs to class w;.

Letz, = o, x; Then z; >0 when correctly labelled,
negative otherwise.



Support Vector Machines

Support vector machines differ from standard
linear machines in three ways.

Discriminant function flexibility

— Linear
e But with nonlinear preprocessing possible
 efficient evaluation via kernel trick

Error function

— Max margin, constrained by misclassification errors
Optimization

— Choice of error function allows global solution

— Nature of solution focuses on points on points on
margin (the support vectors)



since g(x,) =0 and w'w = HWH2

rw
g(X)=wW'x +w, = Wt(X + —) + W,

vl
—g(X.)+ Ww——
i [
— =82
[w]
in particular d([0,0],H) = HW_OH
w

— In conclusion, a linear discriminant function divides
the feature space by a hyperplane decision surface

— The orientation of the surface is determined by the
normal vector w and the location of the surface 1s
determined by the bias



FIGURE 5.2. The linear decision boundary H, where g(x) = w'x+w, = 0, separates the
feature space into two half-spaces R, (where g(x) > 0) and R, (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.



Support vector machines

We assign a value y € {+1,-1}to each point in the training set and

seek a w for which y, (“ X+ no)> 0 forall i.

We want to have a margin, so : (w7x+ wo)zl).

It we scale

.w, and b, nothmg changes, so weset h=1.

We get two hyperplanes :

H, - wix+w, =+1 X2
(color)

/l2 W X+ w, =—1.

The size of the margin is 1/|w|
The points that lie on the
hyperplanes are called

support veclors.



Margins in data space

(a) Larger marpin (b) Smaller marpin

Larger margins promote uniqueness for
underconstrained problems



s Therefore, the problem of maximizing the margin is equivalent to

minimize  Jw)=Zjwf

subject to yi(wai+b)21 Vi

e Notice that J(w) is a quadratic function, which means that there exists a single
global minimum and no local minima
m To solve this problem, we will use classical Lagrangian optimization
techniques

e We first present the Kuhn-Tucker Theorem, which provides an essential result
for the interpretation of Support Vector Machines



(Kuhn-Tucker Theorem)

= Given an optimization problem with convex domain QcRN

minimize  f(z) zeQ

subject to g,(z)<0 i=1,..k

e with feC' convex and g;, h, affine, necessary and sufficient conditions for a
normal point z* to be an optimum are the existence of .*, * such that

oLz a )

(974 =0
oL(z*,a*,B*) _0 k i

P . where L(z,a,B)=f(z)+> ag(z)+> Bh(z)
a *g(z*)=0 i=1,..k i1 i1
9,z*)<0 i=1,...k
a*=0 i=1,...K

s L(z,,p) is known as a generalized Lagrangian function
s The third condition is know as the Karush-Kuhn-Tucker (KKT) complementary
condition. It implies that for active constraints «,=0; and for inactive constraints o,=0

e As we will see in a minute, the KKT condition allows us to identify the training examples that
define the largest margin hyperplane. These examples will be known as Support Vectors.



Constrained Optimization Problems

Minimize enforcing Equality Constraints

— K —

Find: X = X__.  such that h(x)=0

Lagrange Multiplier
min f(x,,x,) st h(x,x,)=0

L : Lagrange func

L(xl > Xp U ) =f(x1 9x2) T U h(xl 9x2)<— v : Lagrange multiplier

0L %) _ (%) o)
axl a.xl axl

0L %) _ (%) o)
axz 8x2 axZ




VL(x ) =Vf(x)+vwWh(x)=0
Vf(x*) = —-vVh(x)) » geometrical meaning

At the candidate minimum point, gradients of the cost and
constraint func are along the same line.

(In other words, Vf i1s a linear combination of V h

L(x,v) = f(x)+v' h(x)

Therefore constrained optimization is converted to unconstrained
optimization.

VL(x',v)=0



* The "Milkmaid problem"

* It's milking time at the farm, and the
milkmaid has been sent to the field to get
the day's milk. She 1s 1n quite a hurry,
because she has a date, so she wants to
finish her job as quickly as possible. "
However, before she gathers the milk,
she has to rinse out her bucket in the
nearby river. .

 Just when she reaches point M, our ),
heroine spots the cow, at point C. She 1s
in a hurry, so she wants to take the C
shortest possible path from where she 1s
to the river and then to the cow. If the
near bank of the river 1s a curve
satisfying the function g(x,y) = 0, what 1s
the shortest path for the milkmaid to
take? (Assume that the field 1s flat and
uniform and that all points on the river
bank are equally good.)




e Problem:
e Minimize f(P) = d(M,P) + d(P,C),
— such that g(P) = 0.

F(P,a) = 1(P) - o g(P).

VF =0
i+oc£=0

a; JoP

T 20 —gP)=0
al




Constrained Optimization

Instead of solving

(2400 210 _ o

8ur1 ’ (9w2 ’

deal with Lagrangian
L(w,a, %) = f(w) + - g(w) + 3 hw)

and solve the dual problem by reasoning about the dual

variables «, (3.



Primal problem:
minimize f(w)
subject to  ¢g(w) <0, h(w) =10

Dual problem:
0(cv, 3) is minimal value of
Lw,a,3) = f(w)+ a-g(w)+ 7-h(w)

w.r.t. w

maximize ((a, F)
subject to o > 0




Kuhn-Tucker

Example

Consider the problem
min{ £ (¥) = (x, - 4)” + (x, - 4)°},
such that

g(x)=x+x,<6 and

2, (X)=x,+3x,<4

We form a new function for minimization :
L(x)=f(x)+ V181(3_5) + Vzgz(i)
LX) =(x, -4 +(x, -4’ +v,(x, + x, —6) + v, (x, + 3x, — 4)

The Kuhn - Tucker conditions are :
VL(x)=0, v.,=0, v.g(x)=0



What do the
multipliers do?

Adding constraint shifts L(x)
in direction of constraint normal




Kuhn-Tucker conditions:
[ OL(X)
oX,
IL(%)
ox,
IL(X)

v,
JL(X)

v,

=2(x,-4)+v,+v, =0

=2(x,-4)+v, +3v, =0
VL(%) =

=(x,+x,-6)=<0

=(x,+3x,-4)=<0

v, =0

v, =0
v, (x,+x,-6)=0
V,(x,+3x,-4)=0

Solve for x in terms of v;, Vv,

Then substitute and solve for
Vi, Vo

x, =-(v,+v,)/2+4
X, =-(v, +3v,)/2+4

Plugging in:
v,(-(v, +v,)/12+4 +
-(v, +3v,)/2+4-6)=0

=v, =0 or v, =2-2v,

V,(-(v, +v,) /2 + 4 +
3(-(v, +3v,)/2+4)-4)=0

v,=0, v,=(12-5v,)/2
if v, =0

v,=12/5
if v, =2-2v,
v, =38
but if v,=0

=>v1=2
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Now solve SVM problem

Maximizing the margin means minimizing |w|

But, subject to the inequality constraints :

_— T o .

Cl: .1,.(‘\\ x,.-H\OJZ] i=1....n

This 1s constrained optimization and Khun - Tucker gives

n ; / . \ \
Lp(w,a)=1w'w —Z(/i v (wix, +w, )1}

il

Taking the derivatives with respect to wy, wy,...,w, and set to zero:



Now solve SVM problem

JdL, o A L ,
— = Tw \\—Z(Zi()-',(_wrx,wLn;J,—l] =0 gives
d"',f ()\l‘ (=1
y oL
Yy =0. <
=1 0')W0
N
W, — Z(Zi_v,.\l , =0
(=l
N "
w,— ) ayx,, =0 .
2 1.7 £ ' f — VY
L W= ) Y,

Z Kernel trick

~ > ~ > e T Ny O > e . -
Substitute this in the Lagrangian. to get the dual form : All we need is

L, Z(/ ——ZZ(/(/ yrx'x, inner products!

t=1 f=I

this quadratic function of @ has to be maximized subject to: @, =0 Z(Zi}', =

Actual optimization 1s done by standard general purpose quadratic programmning package.



A point 1s not allowed to lie within the margin :

_v,(w’x, + W, )—] =20 i=1...,n.

In the optimal situation we have:

a, (\.-',(WTX, + W, )— l): 0 i=1....n.

The Lagrange multipliers ¢; are non - negative, so:
if

VY, (wTX, + W, )—] =0 (point on the margin)
then & -2 0, (active constraint ) otherwise

o, =0 (inactive constraint).

Points with ¢; = O are called support vectors



Classification with support vector machines

Once the e;'s have been determined the value of w can be determined

and thc value of wy can be determined from

- . - .
a;V, (w X, + W ,)—l =0 for any 7 as support ve ctor or as
the average :

nywy +W Y X, =)y,

e SV eSV

A new pattern is classified according to the sign of
wix + W.
Substituti ng w and w;, gives :assign x to class @, if

Za\x x——ZZaf\ X! X +—Z\ > ()

Sy _n e SV 1eSV ,s\ eSV
note ronly first term depends on new data pattern x!



Why it is Good to Have Few SVs

Leave out an example that does not become SV — same solution.

Theorem [66]: Denote #SV(m) the number of SVs obtained
by training on m examples randomly drawn from P(x,7), and E
the expectation. Then
E [#SV(m)]

m
Here, Prob(test error) refers to the expected value of the risk,
where the expectation is taken over training the SVM on samples
of size m — 1.

E [Prob(test ertor)| <



Nonlinear support vector machines

We seek a discriminant function

g(x)=wg(x)+w,
with decision rule:

_— > () @, with corresponding value y, =+1
w' d(x)+ny, = XE€ _ ,

<0 @, with corresponding value y, =-1

The dual form of the Lagrangian now becomes:

Ly Za 43> eyt 0l

i=1 =1

solution (expressed in support vectors):

W= Zal

=SV



2.8

Figure 5.5: The mapping y = (1,2, 22 takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional x space.



Figure 5.6: The two-dimensional input space x is mapped through a polynomial
function f to y. Here the mapping is ¢y — x1. o — 29 and yg o xyxe. A linear
discriminant in this transformed space is a hyperplane, which cuts the surface. Points
to the positive side of the hyvperplane H correspond to category wy, and those beneath
it wy. Here. in terms of the x space. Ry is a not simply connected.



Kernels and Feature Spaces

Preprocess the data with

O X - H
r — D(x),

where H is a dot product space, and learn the mapping from ®(z)
to .

o usually, dim(X) < dim(H)
e “Curse of Dimensionality”?

e crucial issue: capacity, not dimenstonality



Example: All Degree 2 Monomials

¢:R? - R’

(1. x9) V> (21,29, 23) == (If 21129, 1’5)

A

X
X
X s
X
[ O
|
X .
X

X X
X
X X
\ X
)\\ X
) X
k\x
) ))’ v X Z;
™\



General Product Feature Space

vty

How about patterns z € RY and product features of order d?
Here, dim(H) grows like N<.

E.g. N =16 X 16, and d = 5 — dimension 1010



The Kernel Trick, N=2, d=2
D(x) = [xlz,\/ixlxz,xg]

(<x,2>) = (x,z, + x2z2)2
= (xlzzl2 +2X,2,X,2, + x§z§ )

=< [xf,ﬁxlxz,xg],[zf,ﬁzlzz,z§]>

= (O(X),D(2))
= K(X,7)

e Thus the dot product in the non-linear feature space can
be computed in ?ﬁz via the kernel function.



The Kernel Trick, 11

More generally: z. 2/ ¢ RN, d e N:
. N a
{z,2")" = ij - a:j
=1

N
p— - @ & % 8 = - L] ,l 5 & & 8 = ’- _— ,
= E j, 2, T v = (®(x),2(2')),
Ilsemsdd=1
where ® maps mmto the space spanned by all ordered products ot
d mput directions



The Kernel Trick — Summary

e any algorithm that only depends on dot products can benefit
from the kernel trick

e this way, we can apply linear methods to vectorial as well as
non-vectorial data

e think of the kernel as a nonlinear semalarity measure
e cxamples of common kemnels:
Polynomial k(x,2") = ({z.2") +e)?
Sigmoid k(x,2’) = tanh(x (.tz:,a:’ > + O)
Caussian k(z, /) = exp(—||z — 2'|?/(26?))
e Kernel are studied also in the Gaussian Process prediction com-

munity (covariance functions) [71, 68, 72, 40] —
COUTSE



The SVM Architecture

fix)=sgn ( classification fix)=sgn( Z A k(x,x;) + b)
M Ay welghts
k k k k comparison: k(x,x;), e.g. \’(-‘--‘ii):(x"i)d

support vectors

X | oo Xy /\'(x,xi)=t‘dnh( K'(X'xi)+e)

~J
N
—

/I input vector x




Classification

A new pattern is classified according to the sign of

W ¢( )+u

Substituting w gives:

= Zai v.@" (x, )(x)+w,.in which

=SV

et Tom Tl

ieSV eSSV, je SV

Note that classification depends only on inner products of transformed

feature vectors ¢(x).
Some feature spaces come with a kernel K (or vice versa) such that:

K(x,y)=¢"(x)g(y)



Toy Example with Gaussian Kernel

k(z,2") = exp (—|

r—z ||3)
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Simple example (XOR problem)

O(w)=1iw'w

Lw,b,at)=1w

2

Q@)=Y a, -1 ¥ Y ao,yy o) o))

i=1 i=1 j

O(a)= Yo, -5

i=1 i=1 j

(p(X) = [laxlzaﬁxl x29x2 9\/>x1 9\/>x2]

T 2
K(x,x)=0+x x,)
2 2 2 2
=14 X, X, +2X, X, XX, + X5X 5 +2X, X, +2X,X,,

Input vec.

N
- Eai[yi(wai +b)—-1]
i=1

[Em—

£

+1

+1

Mz

oy, (xl.,xj)

I
J—

4
A
-

K evaluated for
all pairs of inputs:

911




Simple example(cont.)
Dual formulation
Ola)=a,+a,+a, +a,
-109al 20,0, - 2005 + 20, + 1)
+ 20,00, = 20,0, + 90 = 20,00, +9a)

1
A, =0, =0, 3 =0, 4 =3

%, -0, —a,+a, =1
1 2 3 4 Q (OC) % Four Input vectors are

-o,+9%, +a,—-a, =1 All support vectors
-o,+0,+9%, —-a, =1

=1 |y ll= L
o -a,—a,+9%, =1 45" J2



Nonseparable Problems

If y; - ({(w,x;) + b) > 1 cannot be satisfied, then a; — .
Modify the constraint to
i (W, x;) +b) 2 1 =¢;
with
& >0
(“soft margin”) and add

C-» &
i=1

in the objective function.



