
CSCI 5521: Pattern Recognition 
Spring 2005, Prof. Schrater 

 
Problem set 2: 
10/14/09      Due:  10/29/09 by 12pm 

Please submit all equation derivations electronically in a separate file than your 
code.  You may use .ps or .pdf formats. 
Note:  Derive below means either to: a) derive a formula  (you must show your work) 
and use it to evaluate the requested quantity (for 100% credit), or  b) you can 
numerically compute the requested quantity (for 80% credit).  Helpful matlab 
functions for this assignment include : 
 mean() 
 cov() 
 normpdf() 
 normcdf() 
And for visualization: 
 meshgrid() 
 surf() 
 surfl() 
 contour() 
 scatter() 
For numerical computations with probabilities: 
 repmat() 
 sum() 
  
1. Computing decision boundaries (10%):  Your botanist friend found out you 

are taken Pattern Recognition and recruited your help.  She has found two kinds of 
mushroom in the forest, one type containing mainly a deadly poison (Agaric 
Moribundus) and the other (Agaric Stimulantus) containing both the poison and more of  
an amazing drug that can cure Lazius Enebriatus Studientis syndrome that causes 
afflicted students to spend inordinate amounts of time (and money) in the bars of 
Minneapolis. The two types of mushroom differ in their chemical composition. Your 
botanist friend gives you indirect and noisy measurements of the amounts of two 
chemical tracers: the poison x and the active ingredient y.  From these measurements you 
were able to derive two class models, 
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a. Derive and plot Bayesian decision boundaries.   
b. Plot posterior probabilities using the surf() command.   

 
2. Using loss functions (set up same as problem 1)(10%): 

 
The two of you decide to market the mushrooms in a capsule form under the name 
Detoxifier. You use your classifier above to separate out the two kinds of mushroom.  



However, due to imperfect separation, some of the capsules will have the poisonous 
mushroom. Given the amount of mushroom in each dose, you determine that 
ingesting a capsule with the poisonous kind will result in death in 1 out of 1000 
instances.  Each time someone dies, it costs your company an average of 
$4,000,000.00.  The cost of harvesting the amount of mushrooms equal to one dose is 
$5.00.  The price of the product per dose is $11.50.  
• Construct a loss function for selling individual capsules assuming you want to 

maximize expected profit. Consider the possible actions- 1) sell, 2) discard the 
dose, and only consider losses and gains on average.  Compute the optimal 
decision boundary with the derived loss function.   

• What is the expected profit per dose of the optimal decision?  Given a million 
students users, how many can be expected to die?  

 
 

3. Bayesian analysis of count data (15%): For a binary classification 
problem, the training labels can be considered as a set of “coin flips” that 
determined which class was present for a given feature point.  The goal is to learn 
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Additionally, note that the gamma function is directly related to the factorial function: 
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"(k +1) = k!    Derive the posterior distribution 
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p(" i |Dc ) . 
 
4. Noisy Labels (10%): 

• Problem 4.16 in Bishop’s Pattern Recognition and Machine Learning 
 
 
5. Generative approach to 

Classifiers (55%): The goal of this 
problem is two-fold:  Demonstrate what 
happens when you use the wrong model for 
data; show how transforming data can make 
a problem tractable. Load the data set 
bullseye.mat found in the directory with this 
file.  The variable bullseyetrain is an array of 
structures that contains 20 sets of training 
data. Each set consists of 3 classes of 2-D 
features. Access the first set for the first class by pts=bullseyetrain.cls(1).pts;  
When plotted, the three classes should look similar to the above plot (with less 
data points). 

a. Using Gaussians when it is clearly the wrong model.  Assume each class 
is Gaussian distributed 
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estimates of the Gaussian parameters for each class using only the first set 
of training data (there are 20 sets).  Also compute estimates of the class 
probabilities from the training data, and use as the prior class probabilities.  
How many total free parameters are there in this model? 

b. Compute the Bayesian decisions via the posterior probabilities 
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p(" i | x,D)# p(" i |D)p(x | ˆ µ i,
ˆ C i)  (i.e. Use plug in the ML parameter 

estimates into the Gaussians. Classify the test data and compute the test 
error using maximum likelihood (e.g. count the number of misclassified 
points). Compute the conditional performance in the form of a 3x3 table: 
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p( ˆ " = ci |" = c j ) where 
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ˆ "  is the class estimate and 
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"  is the true class for 
each data point. You can also derive the total error from this table.  This 
table is sometimes called a confusion matrix.   

c. Use the provided function 
GaussianRegionsDisplayUtility(meanstruct,Cstruct,classpriors,data) to 
help visualize the boundaries you have constructed.  Note that the 
boundaries are not optimal.  This occurred because Gaussians are not the 
right model for this data!  However, performance can be improved.  
Change by hand the class probabilities to minimize training error.  How 
does it perform on the test data? 

d. The less parameters, the better.  Assume that all three class means are 
[0,0] and all the covariances have the form: 
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likelihood estimates of the Gaussian parameters for each class using only 
the first set of training data.  Which has the higher error rate, part a) or part 
d)? By how much? 

e. Repeat b) & d) for each of the 20 training sets.  You will then have twenty 
maximum likelihood estimates of each set of parameters. Compute the 
variance across the mean estimates. How does the number of parameters 
impact the variability of the estimates?  

f. Bayesian estimates:  The data has a simpler description in polar 
coordinates.  Use cart2pol() to transform all the data points to polar 
coordinates.  Use scatter() to plot the transformed points.  What you 
should see is that  the resulting data looks Gaussian on r and uniform on 
theta.  In other words, the two features provided to you can be expressed 
as one relevant feature and one irrelevant (theta).  Ignore theta, and 
classify solely on r.  Now the problem is 1-D and if you inspect the data, a 
Gaussian looks like a better model for all three classes.  Assume each class 
is distributed:  
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Given a prior for all three classes: 

! 

p(µ) = N(µ
0

= 0," 2 =100) ,  



compute the posterior distribution for the mean of each of the three 
classes.  Next compute: 

   

! 

p(x |" i,D) = p(x |µi)p(µi |D)# dµi .    
Use this density estimate to classify test points as before.  Compute test 
performance. 


