
CSCI 5521: Pattern Recognition 
Fall 2007, Prof. Schrater 

 
Problem 4: 
12/1/09     Due:   12/15/09 
 
 
The problem is worth 40% of a normal homework (i.e. the preceeding 3 homeworks).  
 
 Problem Implement dimensionality reduction methods on the digit images. 

a) Implement PCA. Apply to the digit images.  To reduce computational complexity, 
reduce the amount of data.  First load the digit images data.  Restrict yourself to 
200 images from each class: 

indices = [1:200 1001:1200 2001:2200]; 
digitims = digitims(:,:,indices);  
 
For pca, stretch the images into a matrix. 

D = reshape(digitims(:,:,indices),28^2,600); 
REMOVE THE MEAN IMAGE, then perform pca.    
 
How many components required to capture 95% of the data? 
 

b) Implement Kernel PCA using a Gaussian kernel.  Apply to the reduced digit 
images you constructed above.   

a. Compute the Gram matrix:
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The matrix can be computed efficiently using 
Rp = D'*D;  
b=diag(Rp)*ones(1,600); 
R = b+b'-2*Rp; 
A good range for the variance 
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" 2 is between 10^6.3 and 10^6.7. 
 
b. You should subtract off the mean, using the kernel result. 
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where K is the Gram matrix and 
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1
ik
 is the ikth entry in a matrix of 

ones.  
The derivation is in  Appendix A “Centering in High-Dimensional Spaces” in 
Nonlinear Component Analysis as a Kernel Eigenvalue Problem by Bernhard 
Schölkopf, Alexander Smola, and Klaus Müller 



 
c. Perform an eigenanalysis on the Gram Matrix 
d. Save the top 3 eigenvectors = {v1,v2,v3} 
e. To compute the coordinates {y1,…,ym} of any images in the new space, 

project the kernel evaluated at the new point and all the training points 
onto the mth eigenvector. 
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c) Take the leading 3 eigenvectors of both kpca and pca analyses. Project the data 
into this 3-dimensional space.  

 
For variance of 10^6.5, the projections should look about like this for kpca: 

   
Plot images at each coordinate location two components at a time (generating 
3 images) for both kpca and pca.  Here is some code to help visualize in this 
format: 

ranges = max(y)-min(y);   
% renormalize 
y(:,1) = y(:,1)/ranges(1);  
y(:,2) = y(:,2)/ranges(2); 
y(:,3) = y(:,3)/ranges(3); 
imcoorrange = 0.0:0.025/27:0.025; 
 
hold on;  
for j = 1:size(y,1),  

imagesc(y(j,1)+ imcoorrange/2, y(j,2)+ imcoorrange(end:-1:1)/2, digitims(:,:,indices(j))) 
end 



 
 

Which dimensionality reduction method, PCA vs. kPCA works better for recognition, 
in the sense that it preserves more of the information about the digit classes? Prove 
this using the classifier of your choice. Which method is better for reconstruction?  
 
d) Use the Gaussian mixture model code in the Netlab toolbox to learn a soft cluster 

assignment using a 3 component model for the image data mapped into a 3D kpca 
space as above.  The soft cluster assignments are the posterior probabilities of 
each data point  (the probability of point k belonging to cluster j).  Use the 
posterior probabilities to classify the points, and compute the unsupervised error 
rate by comparing with the true digit labels.  

 
EXTRA CREDIT  20% of a normal homework. 
 Use Gaussian process regression on the galaxy data.  You can adapt the code by 
Rasmussen and Williams found: 
http://www.gaussianprocess.org/gpml/code/matlab/doc/ 
 
For full credit, experiment with using different kernel functions, and optimize the kernel 
weights and parameters.   


