
Non-parametric Density
Estimation: Introduction

• Useful parametric densities are limited in the shape they
take on-- they may not fit your data well.

• Nonparametric procedures can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known

• There are two types of nonparametric methods:
– Estimating P(x | ωj )
– Bypass probability and go directly to a-posteriori

probability estimation



Density Estimation via Binning
– Basic idea:

Probability that a vector x will fall in region        is:

– P is a smoothed (or averaged) version of the density function
p(x) if we have a sample of size n; therefore, the probability that
k points fall in        is then:

   and the expected value for k is:
                                 E(k) = nP                 (3)

€ 

P = p(x)dx               (1)
ℜ

∫

€ 

Pk = n
k
 
 
 
 
 
  Pk (1− P)n−k         (2)€ 

ℜ

€ 

ℜ



Histogram



ML estimation of  θ= P
                   is reached for

Therefore, the ratio k/n is a good estimate for the
probability P and hence for the density function p.

p(x) is continuous and that the region R is so small
that p does not vary significantly within it, we can
write:

Where x’ is a point within R and V the volume
enclosed by R.
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p(x)dx = p (x)V ≅ p(x')V
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Combining equation (1) , (3) and (4) yields:
V
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Where: µ(R) is:         an area in the Euclidean space R2

   a volume in the Euclidean space R3

   a hypervolume in the Euclidean space Rn

Since p(x) ≅ p(x’) = constant, therefore in the Euclidean space R3:
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p(x)dx = p(x') dx = p(x') 1ℜ(x)dx−∞
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p(x)dx ≅ p(x').
ℜ

∫ V

and  p(x) ≅ k
nV



–  Condition for convergence

The fraction k/(nV) is a space averaged value of p(x).
 p(x) is obtained only if V approaches zero.

This is the case where no samples are included in R: it is an
uninteresting case!

In this case, the estimate diverges: it is an uninteresting
case!
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• The volume V needs to approach 0 anyway if we want
to use this estimation

• Practically, V cannot be allowed to become small since the number of
samples is always limited

• One will have to accept a certain amount of variance in the ratio k/n

• Theoretically, if an unlimited number of samples is available, we can
circumvent this difficulty
To estimate the density of x, we form a sequence of regions
R1, R2,…containing x: the first region contains one sample, the
second two samples and so on.
Let Vn be the volume of Rn, kn the number of samples falling in Rn
and pn(x) be the nth estimate for p(x):

pn(x) = (kn/n)/Vn            (7)



Three necessary conditions should apply if we want pn(x) to
converge to p(x):

There are two different ways of obtaining sequences of regions that
satisfy these conditions:

(a) Shrink an initial region where Vn = 1/√n and show that

      This is called “the Parzen-window estimation method”

(b) Specify kn as some function of n,  such as kn = √n; the volume
Vn is grown until it encloses kn neighbors of x. This is called “the
kn-nearest neighbor estimation method”
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Parzen Windows
– Parzen-window approach to estimate densities

assume that the region Rn is a d-dimensional
hypercube

– ϕ((x-xi)/hn) is equal to unity if xi falls within the
hypercube of volume Vn centered at x and equal
to zero otherwise.
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– The number of samples in this hypercube is:

Which yields the probability estimate:

Pn(x) estimates p(x) as an average of functions of x and
the samples (xi) (i = 1,… ,n). These functions ϕ can be general!
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– Illustration

•  The behavior of the Parzen-window method

– Case where p(x) N(0,1)
Let ϕ(u) = (1/√(2π) exp(-u2/2) and hn = h1/√n (n>1)

                                                                     (h1: known parameter)

Thus:

is an average of normal densities centered at the
samples xi.








 −
= ∑

=

= n

i
ni

1i n
n h

xx 
h
1

n
1)x(p ϕ



– Numerical results:

For n = 1 and h1=1

For n = 10 and h = 0.1, the contributions of the
individual samples are clearly observable !
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Analogous results are also obtained in two dimensions as illustrated:





– Case where p(x) = λ1.U(a,b) + λ2.T(c,d) (unknown
density) (mixture of a uniform and a triangle density)





–  Classification example

In classifiers based on Parzen-window estimation:

• We estimate the densities for each category and
classify a test point by the label corresponding to the
maximum posterior

• The decision region for a Parzen-window classifier
depends upon the choice of window function as
illustrated in the following figure.





Nearest Neighbor Approach
• Problem with Parzen (kernel):

• Unknown “best” window function

•Nearest Neighbor Approach:
• let the cell volume be a function of the training data,
by centering a cell about each point x and increasing
the volume until kn samples are contained, where kn
depends on n.
• These samples are the kn nearest-neighbors of x.







2-D

• The k-nearest-neighbor estimate of a two-
dimensional density for k = 5.





Estimation of aposteriori Prob

Thus, the estimate is just the fraction of the samples in a cell
from the ith class




