Classifier Performance

Assessment and Improvement
Error Rates

Define the *Error Rate function*

\[
Q(\hat{\Theta}, \Theta) = \begin{cases} 1 & \text{if } \hat{\Theta} = \Theta \\ 0 & \text{otherwise} \end{cases}
\]

- When training a classifier, the *Apparent error rate (or Test Error)* is:

\[
E_{test} = \frac{1}{N} \prod_{i=1:N} Q(\hat{\Theta}(x_i, c_i), c_i)
\]

where \(x_i \) are training features, and \(c_i \) training labels

- We want a general way to assess the *Generalization error (or True error rate)*

\[
E_{true} = \prod_{c} \int p(x, c) Q(\hat{\Theta}(x, c), c) \, dx
\]
Learning as Empirical Risk Minimization

Optimal decisions can be formulated as minimizing the theoretical Risk

\[R(\hat{f}) = \sum_{j=1}^{C} L(\hat{f}(x) | w_j) p(w_j, x) dx \]

But now our decision function is determined by parameters \(\theta \)

\[\hat{f}(x) = g(x; \theta) \]
[e.g. \(\theta \) is the weight vector for Perceptron]

This induces a loss function on \(\theta \)

\[R(\theta) = \sum_{j=1}^{C} L(\hat{f}(x; \theta) | w_j) P(w_j | x) p(x) dx \]

\[\hat{f}(x) = g(x; \theta) \]
[e.g. \(\theta \) is the weight vector for Perceptron]

Two problems:

1. \(P(\theta_j, x) \) is unknown
2. The estimate \(\theta(\mathcal{D}) \) is typically a complicated random var. across test data sets, thus the Risk is too.
Learning as Empirical Risk Minimization

Goal: \[R(\mathbb{I}) = \sum_{j=1}^{C} L(\mathbb{I}(x;\mathbb{I}) \mid \mathbb{I}_j) p(\mathbb{I}_j, x) \, dx \]

Problem: What we are faced with is an estimate from data:
\[R_{emp}(\mathbb{I}_D) = \sum_{j=1}^{C} L(\mathbb{I}(x;\mathbb{I}_D) \mid \mathbb{I}_j) \hat{p}_D(\mathbb{I}_j, x) \, dx \]

Where \(\hat{p}_D(\mathbb{I}_j, x) \) is an estimate of the true distribution based on data \(D \), and \(\mathbb{I}_D \) is an estimate of the model parameters.

\[R_{emp}(\mathbb{I}_D) \] will be termed the **Empirical Risk** (not standard terminology)
Learning as Empirical Risk Minimization

\[R(\mathcal{F}) = \sum_{j=1}^{C} L(\hat{\mathcal{F}}(\mathbf{x};\mathcal{F}) \mid \mathcal{F}_j) p(\mathcal{F}_j, \mathbf{x}) d\mathbf{x} \]

Derive

Replace the probability dist. with the sample :

\[p(\mathcal{F}_j, \mathbf{x}) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{x}_i \mid \mathcal{F}_j, \mathcal{F}_j) \]

Observed Risk

Substituting in above (after integrating and summing):

\[R_{\text{emp}}(\mathcal{F}) = R_{\text{obs}}(\mathcal{F}) = \frac{1}{N} \sum_{i=1}^{N} L(\hat{\mathcal{F}}(\mathbf{x}_i;\mathcal{F}) \mid \mathcal{F}_j) \]

When the loss is making an error :

\[L(\hat{\mathcal{F}}(\mathbf{x}_i;\mathcal{F}) \mid \mathcal{F}_j) = \mathcal{N}(\hat{\mathcal{F}}(\mathbf{x}_i;\mathcal{F}) \mid \mathcal{F}_j) = \begin{cases} 1 & \text{if } \hat{\mathcal{F}}(\mathbf{x}_i;\mathcal{F}) = \mathcal{F}_j \\ 0 & \text{else} \end{cases} \]

Observed Risk for 0-1 Loss is Error Rate

\[R_{\text{obs}}(\mathcal{F}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\hat{\mathcal{F}}(\mathbf{x}_i;\mathcal{F}) \mid \mathcal{F}_j) = \text{# correct} / \text{Total} \]
Implication: Minimizing the training error is equivalent to modeling \(p(x, \mathbf{\theta}) \) as a sum of delta functions.

Data is sampled from some unknown distribution.

Samples form empirical distribution:

\[
F(x) = \sum_{i=1:N} \delta(x - x_i)
\]
Need better estimator for the Empirical Risk

Improvement comes from the way we use the data:

1. **Parameter Estimate**
 - Approximation vs. estimation error
 - Depends implicitly on:

2. **Probability Density Estimate**
 - **Resampling statistics**: Methods to provide better estimates of the actual Risk by resampling from data.
 - Bootstrap
 - Jackknife
 - Cross-validation
 - **Theoretical bounds**: Based on better approximations to the true data distribution
 - Support vector machines
Improving Parameter Estimates

Goal: Parameter estimates with low

- **Estimation error (VARIANCE):** How far is the estimate from minimizing the Empirical Risk

- **Approximation error (BIAS):** How does the model constrain the best estimate from optimizing the true Risk
FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that are complicated. While such a decision may lead to perfect classification of our training samples, it would lead to poor performance on future patterns. The novel test point marked ? is evidently most likely a salmon, whereas the complex decision boundary shown leads it to be classified as a sea bass. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.
Bias-Variance Trade off

• For Regression (fitting continuous functions to data), there is a well known trade off in fit quality.

• **Bias**: For models with few parameters, there is a large _approximation error_. The true function is less likely to be in the set achievable via the model.

• **Variance**: For models with many parameters, there is a large _estimation error_. Test error variance across test samples will be finite.
Trade-off:

Complex F overfitting
Simple F underfitting

Objective: Find ‘best balance’ between the two
Split error into Bias $+$ Variance
Unbiased estimator: $\text{bias} = 0$.

<table>
<thead>
<tr>
<th>complex \mathcal{F}</th>
<th>low bias, high variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple \mathcal{F}</td>
<td>high bias, low variance</td>
</tr>
</tbody>
</table>

Objective: minimize bias and variance simultaneously - usually impossible.

Rule of thumb: The variance is the main problem for small training sets and complex \mathcal{F}.
Bias-Variance for Classifiers

\[\Sigma_i = \begin{pmatrix} \sigma_{i1}^2 & \sigma_{i12} \\ \sigma_{i12} & \sigma_{i2}^2 \end{pmatrix} \quad \Sigma_i = \begin{pmatrix} \sigma_{ii}^2 & 0 \\ 0 & \sigma_{ii}^2 \end{pmatrix} \quad \Sigma_i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Bias-Variance Decomps. for Classifiers

Dichotomy not as clear for classifiers as regression.
Topic of current research.
Recent result:
For training sets $D = \{D_1, \ldots, D_M\}$

Main Estimate

$$\hat{w}_m(D) = \arg\min_{\hat{w}} E_D[L(\hat{w}, \hat{w})]$$

Est. based on many Data sets

‘Bias’

$$B(x_i) = L(\hat{w}_m(x_i), \hat{w}_{best}(x_i))$$

Error from to best estimate

‘Variance’

$$V(x_i) = E_D[L(\hat{w}_m(x_i), \hat{w}(x_i))]$$

Error from single Data set est. to main

‘Noise’

$$N(x_i) = E_{\hat{w}}\left[L(\hat{w}^*_{best}(x_i), \hat{w}_{true})\right]$$

Errors you can’t avoid

Solutions

Given enough data, split it:

- test
- validation
- training

If not enough data, estimate generalization performance
 - analytically (Akaike information criterion, etc.)
 - by reusing samples:
 - cross-validation
 - bootstrap
Roadmap

• Methods to estimate generalization error from training sample.

• Methods for improving classifier performance:
 – Choosing minimal gen. Error rate classifier
 – Committee decisions (voting)
 – Averaging classifiers
 – Bagging
 – Boosting
Cross-Validation

- Partition data into K pieces. Predict class membership in one piece by training on all others. Repeat.
- Typically, $K = 5 \ldots 10$.
- For $K = N$ (# training feature vectors), leave-one-out (LOO) cross-validation results.
- Choosing $K \ll N$ is faster and has lower variance but more bias\(^3\), especially for small N.
Bootstrap

- Sample from training set *with* replacement. Train a classifier on that set, and calculate “leave-one-out prediction error” on samples that are *not* in the set.
- Repeat 50-100 times, and estimate parameters

The .632 estimator for prediction error

Compute

\[(1 - 0.632) \times \text{(training error)} + 0.632 \times \text{(leave-one-out prediction error)}\]

- balances optimism (from inclusion of training error) with pessimism (because not all of the data is used in training)
- works well as long as there is no overfitting
Bootstrap

Basic idea: Generate artificial data in place of unknown distribution.

1. Generate K samples, each of size n, drawn *with replacement* from the n training observations. Set

 $$D_b^{(k)} = \{(X_1^{(*k)}, Y_1^{(*k)}), \ldots, (X_n^{(*k)}, Y_n^{(*k)})\}$$

2. For each bootstrap sample k, let $D_{b,v}^{(k)}$ include the training samples which are *not* included in $D_b^{(k)}$.

3. Compute the decision rule $\hat{\alpha}^{(k)}$ for each bootstrap sample $D_b^{(k)}$.
4. Evaluate the validation-error for sample k:

$$\tilde{L}_b^{(k)} = \frac{1}{n_v^{(k)}} \sum_{\ell \in D_v^{(k)}} \lambda(\hat{\alpha}^{(k)}(X_\ell)|Y_\ell).$$

5. Average the results over all K bootstrap samples, namely

$$\tilde{L}_b(\hat{\alpha}_n) = \frac{1}{K} \sum_{k=1}^{K} \hat{L}_b^{(k)}(\hat{\alpha}^{(k)}).$$
1. Choose BEST
2. Committee vote
3. Average
Examples of bagging unstable and stable classifier (Breiman, 1996)

Single and Bagged Decision Trees (50 Bootstrap Replicates)
Test Set Average Misclassification Rates over 100 Runs

Single and Bagged k-NN (100 Bootstrap Replicates)
Test Set Average Misclassification Rates over 100 Runs
Combining Classifiers

- **Goal:** generate a set of simple “weak” classification methods and combine them into a single “strong” method.
- **Solution:** Average multiple classifiers by estimate of their reliability.

Combine the discriminant functions additively so that the final classifier is the sign of

\[
\hat{g}_m(x) = \sum_{i=1}^{m} h_i(x; \hat{w}_i) + \cdots + \sum_{m} h_m(x; \hat{w}_m)
\]

where the “votes” \(\sum_i \) emphasize component classifiers that make more reliable predictions than others.
Adaboost

Final Classifier

\[G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right] \]

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.
General Algorithm

1: initialize weights $w_{i}^{t} = 1/n$ on each sample x_i
2: for each round t do
3: select classifier f_t that minimizes the weighted empirical loss on the reweighted training set
4: compute relative ensemble weight α_t for this classifier
5: update distribution w_{i}^{t+1} by increasing/decreasing weights of incorrectly/correctly classified examples
6: end for
7: output classifier $\text{sign} \sum_{t=1}^{T} \alpha_t f_t(\cdot)$
Adaboost Algorithm

Algorithm 1 (AdaBoost)

1 \textbf{begin initialize} \ D = \{x^1, y_1, x^2, y_2, \ldots, x^n, y_n\}, k_{max}, W_1(i) = 1/n, i = 1, \ldots, n

2 \hspace{1cm} k \leftarrow 0

3 \hspace{1cm} \textbf{do} \hspace{0.5cm} k \leftarrow k + 1

4 \hspace{1cm} \text{Train weak learner } C_k \text{ using } D \text{ sampled according to distribution } W_k(i)

5 \hspace{1cm} E_k \leftarrow \text{Training error of } C_k \text{ measured on } D \text{ using } W_k(i)

6 \hspace{1cm} \alpha_k \leftarrow \frac{1}{2} \ln[(1 - E_k)/E_k]

7 \hspace{1cm} W_{k+1}(i) \leftarrow \frac{W_k(i)}{Z_k} \times \left\{ \begin{array}{ll}
\frac{e^{-\alpha_k}}{e^{\alpha_k}} & \text{if } h_k(x^i) = y_i \text{ (correctly classified)} \\
\frac{e^{\alpha_k}}{e^{-\alpha_k}} & \text{if } h_k(x^i) \neq y_i \text{ (incorrectly classified)}
\end{array} \right.

8 \hspace{1cm} \textbf{until} \hspace{0.5cm} k = k_{max}

9 \hspace{1cm} \textbf{return} \ C_k \text{ and } \alpha_k \text{ for } k = 1 \text{ to } k_{max} \text{ (ensemble of classifiers with weights)}

10 \hspace{1cm} \textbf{end}
Adaboost Example

- The simple classifiers in our case are decision stumps:

 \[h(x; \theta) = \text{sign}(w_1 x_k - w_0) \]

where \(\theta = \{k, w_1, w_0\} \).

Each decision stump pays attention to only a single component of the input vector.
Boosting: example
FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.
Adaboost Summary

- Basic AdaBoost: Combine weak classifiers to make a strong classifier.
- Dynamically weight the data, so that misclassified data weighs more (like SVM pay more attention to hard-to-classify data).
- Exponential convergence to empirical risk (weak conditions).