CHAPTER 9

An Introduction to Linear Algebra in
Parallel Distributed Processing

M. I. JORDAN

Many of the properties of the models described in this book are cap-
tured by the mathematics of linear algebra. This chapter serves as a
introduction to linear algebra and is a good starting place for the reader
who wishes to delve further into the models presented in other parts of
the book. I will focus on the aspects of linear algebra most essential for
the analysis of parallel distributed processing models, particularly the
notions of a vector space, the inner product, and linearity. I will also
discuss some simple PDP models, and show how their workings
correspond to operations on vectors.

VECTORS

A vector is a useful way to describe a pattern of numbers. Cossider
for example the pattern of numbers that describe the age, height, and
weight of an average person. Suppose that Joe is 37 years old, 72
inches tall, and weighs 175 pounds. This information can be summar-
ized in a vector or ordered list of numbers. For each person, there is a
corresponding vector, as in Figure 1A. Each vector has three com-
ponents: age, height, and weight. There is no reason to limit ourselves
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FIGURE 1.

to only three components, however. If, for example, we also wanted to
keep track of Joe’s shoe size and year of birth, then we would simply
make a vector with five components, as in Figure 1B.

One important reason for the great utility of linear algebra lies in the
simplicity of its notation. We will use bold, lower-case letters such asv
to stand for vectors. With this notation, an arbitrarily long list of infor-
mation can be designated by a single symbol.

When a vector has no more than three components, it can be
represented graphically by a point or an arrow in three-dimensional
space. An example with three components is given in Figure 2 for the
vector corresponding to Mary. Each axis in the figure corresponds to
one of the three components of the vector.

It will prove helpful to try and visualize vectors as points or arrows in
two- and three-dimensional space in proceeding through this chapter in
order to develop geometric intuition for the operations on vectors.
Notice, however, that there is no fundamental distinction between such
vectors and vectors with more than three components. All of the
operations upon vectors described in later sections apply equally well to
vectors with any finite number of components.

In a parallel distributed processing model, many quantities are best
represented by vectors. The pattern of numbers representing the
activations of many processing units is one example. Other examples
are the set of weights on the input lines to a particular processing unit,
or the set of inputs to a system.
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BASIC OPERATIONS
Multiplication by Scalars

In linear algebra, a single real number is referred to as a scalar. A
vector can be multiplied by a scalar by multiplying every component of
the vector by the scalar.

Examples:

B

Geometrically, scalar multiplication corresponds to lengthening or
shortening the vector, while leaving it pointing in the same or opposite
direction. As can be seen in Figure 3, multiplying a vector by 2 leaves
it pointing in the same direction but twice as long. In general, multi-
plying a vector by a positive scalar produces a new vector that is longer
or shorter by an amount corresponding to the magnitude of the scalar.
Multiplication by a negative scalar produces a vector pointing in the
opposite direction. It, too, is longer or shorter depending on the mag-
nitude of the scalar. Two vectors that are scalar multiples of one
another are said to be collinear.



368 FORMAL ANALYSES

FIGURE 3.

Addition of Vectors

Two or more vectors can be added by adding their components. The
vectors must have the same number of components to be added; other-
wise the operation is undefined.

Examples:
o2l |3 2l o 3 5
1 3 4

Vector addition is associative (the vectors can be grouped in any
manner) and commutative (the order of addition is unimportant) just
like addition in ordinary algebra. This is true because if we consider
one component at a time, vector addition is just addition in ordinary
algebra.

How can vector addition be represented graphically? Consider Figure

1 3
4, where the vectors v, = lzl andv, = l 1] are being added. It can be

4
seen that the sum v, + v, is a vector 3 which lies between v, and v,.

Forming the parallelogram with sides v, and v,, we see that the sum of
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FIGURE 4.

the two vectors is the diagonal of this parallelogram. In two and three
dimensions this is easy to visualize, but not when the vectors have
more than three components. Nevertheless, it will be useful to imagine
vector addition as forming the diagonal of a parallelogram. One impli-
cation of this view, which we will find useful, is that the sum of two
vectors is a vector that lies in the same plane as the vectors being
added.

Example: Calculating averages. We can demonstrate the use of the
two operations thus far defined in calculating the average vector. Sup-
pose we want to find the average age, height, and weight of the four
individuals in Figure 1A. Clearly this involves summing the com-
ponents separately and then dividing each sum by 4. Using vectors,
this corresponds to adding the four vectors and then multiplying the
resulting sum by the scalar 1/4. Usingu to denote the average vector,

: 34.5
= 72 + 30 + 65 + 58.5
175 121 155 128

Using vector notation, if we denote the four vectors by vy, v,, v3, and
v4, then we can write the averaging operation as

u-%(v1+v2+v3+v4).
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The vector u, then, is a vector whose components are the averages of
the components of the four individual vectors. Notice that the same
result is obtained if each vector is first multiplied by 1/4, and the
resulting vectors are added. This shows that multiplication by scalars
and vector addition obey a distributive law, as in ordinary algebra.

LINEAR COMBINATIONS AND LINEAR
INDEPENDENCE

Linear Combinations of Vectors

The average vector calculated in the last section is an example of a
linear combination of vectors. In this section, we pursue this idea
further.

1 3 9
Consider the vectors v, = 2l V2= 2| and u = [10]. Can u be

written as the sum of scalar multiples of v, and v,? That is, can scalars
¢, and c, be found such that u can be written in the form

u=cv;+ CaV) ?

If so, then u is said to be a linear combination of the vectors v| and v,.
The reader can verify that ¢, = 3 and c, = 2 will work, and thusu is a
linear combination of v, and v,.

This can also be seen directly in Figure 5, where these vectors are
plotted. Remembering that multiplication by a scalar shortens or

FIGURE §.
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lengthens a vector and that vector addition corresponds to forming the
diagonal of a parallelogram, it seems clear that we can find scalars to
adjust v; and v, to form a parallelogram that yields u. This is indicated
in the figure. It also seems clear that, using positive scalars, any vector
in the shaded area of the figure can be generated this way. By using
both negative and positive scalars, any vector in the plane can be writ-
ten as a linear combination of v, and v,. This is true because multipli-
cation by a negative scalar reverses the direction of a vector as well as
shortening or lengthening it. The vectors v; and v, are said to span the
plane, because any vector in the plane can be generated from these two
vectors.

In general, given a setv,,v,, ..., v, of vectors, a vector v is said to
be a linear combination of the v, if scalars cy,c,, . . ., ¢, can be found
such that

V=CVi+ Vet oo +cpv,. (1

The set of all linear combinations of the v; is called the set spanned by
thev,.

1 0 0
Example. The three vectors OI, [1] and | 0| span all of three-
0 0 1

a
dimensional space since any vector v = [b] can be written as a linear
c

1 0 0
combination v= g |0|+ b | 1|+ c| 0| The vectors are referred to
0 0 1

as the standard basis for three-dimensional space (more on the idea of a
basis in the next section).

Linear Independence

To say that a set of vectors span a space is to say that all vectors in
the space can be generated from the original set by linear combination.
We have shown examples in which two vectors span two-dimensional
space and three vectors span three-dimensional space. We might be led
to expect that, in general, n vectors suffice to span n-dimensional
space. In fact, we have been using the term "dimension" without defin-
ing what it means; it would seem that a good definition of n-
dimensional space is the set of vectors spanned by » vectors.
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To make this definition work, we would require that the same size
space be generated by any set of n vectors. However, this is not the
case, as can be easily shown. Consider any pair of collinear vectors, for
example. Such vectors lie along a single line, thus any linear combina-
tion of the vectors will lie along the same line. The space spanned by
these two vectors is therefore only a one-dimensional set. The col-

1
linear vectors 1 and 9| are a good example. Any linear combina-

tion of these vectors will have equal components, thus they do not span
the plane.

Another example is a set of three vectors that lie on a plane in
three-dimensional space. Any parallelograms that we form will be in
the same plane, thus all linear combinations will remain in the plane
and we can’t span all of three-dimensional space.

The general rule arising from these examples is that of a set of n
vectors, if at least one can be written as a linear combination of the
others, then the vectors span something less than a full n-dimensional
space. We call such a set of vectors linearly dependent. If, on the other
hand, none of the vectors can be written as a linear combination of the
others, then the set is called linearly independent. We now revise the
definition of dimensionality as follows: n-dimensional space is the set
of vectors spanned by a set of n linearly independent vectors. The n
vectors are referred to as a basis for the space.

Examples:

1 2
1. “ and 2| are linearly dependent. They span only a one-

dimensional space.

1
2. J and 1| are linearly independent. Thus they span the

plane, a two-dimensional space.

11 |2 -1
3. b 11l and 3| are linearly dependent since 7 times the

first vector minus 4 times the second vector is equal to the third

1] |3 9
4. 12}, [2 , and | 10| are linearly dependent. Clearly they cannot
0] 0 0

span all of three-dimensional space, because no vector with a
nonzero third component can be generated from this set.
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Notice the relationship between examples (2) and (3). The vectors in
example (2) are linearly independent, therefore they span the plane.
Thus any other vector with two components is a linear combination of
these two vectors. In example (3), then, we know that the set will be
linearly dependent before being told what the third vector is. This sug-
gests the following rule: There can be no more than n linearly indepen-
dent vectors in n-dimensional space.

A linearly independent set of vectors has the important property that
a vector can be written as a linear combination of the set in only one
way. In other words, the coefficients ¢; in Equation 1 are unique if the
vectors v; are linearly independent. This fact can be easily seen, for
example, in the case of the standard basis, for there is only one vector
in the basis which has a nonzero entry for any given component.

For linearly dependent vectors, however, the situation is different. If
a vector can be written as a linear combination of a linearly dependent
set of vectors, then there are an infinite number of sets of coefficients
that will work. Let us attempt to demonstrate this fact with the aid of
geometric intuition. Suppose that we wish to write vector v as a linear
combination of three vectors v, v,, and v; in the plane. Let us choose
any arbitrary coefficient ¢, for the vector v,. As shown in Figure 6,
there must be a vector w such that v = ¢,v, + w. Thus, if we can write
w as a linear combination of v, and v3, i.e., w = cv, + c3v3, then we
have succeeded in writing v as a linear combination of v, v,, and v;.
But clearly we can do this, because w is a vector in the plane, and v,
and v together span the plane.

FIGURE 6.
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VECTOR SPACES

Let us pause to reflect for a moment upon what a vector is. I have
implied that a vector is a list of numbers, and I have also used the term
to refer to a point or an arrow in space. Are both of these objects vec-
tors, or is one just a heuristic representation for the other? Are there
other objects that should be called vectors? Just what is a vector?

As is often the case in mathematics, these kinds of questions are
solved by being avoided. Consider the following definition of an
abstract vector space, and try to decide what a vector is.

A vector space is a set V of elements, called vectors, with the follow-
ing properties:

® To every pair, u and v, of vectors in V, there corresponds a
vector u + v also in V, called the sum of u and v, in such a way
that addition is commutative and associative.

e For any scalar ¢ and any vector v in V, there is a vector cv in
V, called the product of ¢ and v, in such a way that multiplica-
tion by scalars is associative and distributive with respect to
vector addition.!

The answer to the question is that a vector is an undefined object in
linear algebra, much like a line in geometry. The definition of a vector
space simply lists the properties that vectors must have, without speci-
fying what a vector must be. Thus, any set of objects that obey these
properties can be called a vector space. Lists of numbers are vectors
when addition is defined as adding components separately and scalar
multiplication is defined as multiplying all the components by the
scalar, because these operations fill all the requirements of a vector
space. Arrows or points in space are also vectors when addition is
defined geometrically as taking the diagonal of a parallelogram and
scalar multiplication is defined as lengthening or shortening the arrow,
because again, these operations fill the requirements of a vector space.
A seemingly unrelated example of a vector space is the set of polyno-
mials of order n, with addition and scalar multiplication defined in the
obvious way.

This sort of abstraction is common in mathematics. It is useful
because any theorem that is true about a general vector space must be

1 | have left out certain technicalities usually included as axioms for a vector space.
These include the axiom that there must be a zero vector, and for every vector, there is
an additive inverse.
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true about any instantiation of a vector space. We can therefore discuss
general properties of vector spaces without being committed to choos-
ing a particular representation such as a list of numbers. Much of the
discussion about linear combinations and linear independence was of
this nature.

When we do choose numbers to represent vectors, we use the fol-
lowing scheme. First we choose a basis for the space. Since every vec-
tor in the space can be written as a linear combination of the basis vec-
tors, each vector has a set of coefficients c,c,, . . ., ¢, which are the
coefficients in the linear combination. These coefficients are the
numbers used as the components of the vector. As was shown in the
previous section, the coefficients of a given vector are unique because
basis vectors are linearly independent.

There is a certain arbitrariness in assigning the numbers, since there
are infinitely many sets of basis vectors, and each vector in the space
has a different description depending on which basis is used. That is,
the coefficients, which are referred to as coordinates, are different for
different choices of basis. The implications of this fact are discussed
further in a later section where I also discuss how to relate the coordi-
nates of a vector in one basis to the coordinates of the vector in
another basis. Chapter 22 contains a lengthy discussion of several
issues relating to the choice of basis.

INNER PRODUCTS

As of yet, we have no way to speak of the length of a vector or of
the similarity between two vectors. This will be rectified with the
notion of an inner product.

The inner product of two vectors is the sum of the products of the
vector components. The notation for the inner product of vectors
vandw isv - w. As with vector addition, the inner product is defined
only if the vectors have the same number of components.

Example:

3 1
v=|—-1 w=| 2
2 1

vw=0@B-D+1-D+Q-1)=3.
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The inner product is a kind of multiplication between vectors,
although somewhat of a strange sort of multiplication, since it produces
a single number from a pair of vectors. What does this single number
"measure" ?

Length

As a special case, consider taking the inner product of a vector with

3
itself. An example is the vector v = 4 in Figure 7. The inner pro-
duct of v with itself is
v-v=32+442= 25

Consider the right triangle in Figure 7 with sides corresponding to the
components of v, and hypotenuse v itself. The Pythagorean theorem
tells us that the square of the length of v is equal to the sum of the
squares of the sides. Since this is exactly what is calculated by the
inner product v - v, it appears that a reasonable definition of the length
of a vector is the square root of the inner product of the vector with
itself. Thus we define the length of a vector v, denoted by |v|| , as

vl = & - )%

Although the definition was motivated by an example in two dimen-
sions, it can be applied to any vector. Notice that many of the

FIGURE 7.
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properties we intuitively associate with length are included in this defin-
ition. For example, if a vector has larger components than another
vector, it will be longer, because the squared components will contri-
bute to a larger inner product. Multiplying a vector by a scalar pro-
duces a new vector whose length is the absolute value of the scalar
times the length of the old vector:

levll = leflvll.

This is a property that can be easily proved. Somewhat harder to prove
is the so-called triangle inequality, which states that the length of the
sum of two vectors is less than or equal to the sum of the lengths of
the two vectors:

vy +vall < Jvall + |Ivall.

Geometrically, the triangle inequality corresponds to the statement that
one side of a triangle is no longer than the sum of the lengths of the
other two sides.

Thus, in the special case where the operands are the same vector, the
inner product is closely related to the idea of length. What if the
operands are different vectors?

Angle

The angle between two vectors v and w is defined in terms of the
inner product by the following definition:

(2

vl lwl
where 0 is the angle between v and w. Note that all of the quantities on
the right hand side of the equation are easily calculated for n-
dimensional vectors. At the end of this section, I will show geometri-

cally why this formula is correct in two-dimensional space, using the
ordinary geometrical definition of angle.

0
Example. Find the angle § between the vectors v, = [1] and

1
vy,= [ II First, we calculate the necessary inner product and lengths:

Vitvy=1 vl = 1 Ivall = V2,
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and then substitute these values in Equation 2:

1
cos -3 0.707.

Thus,
6 = cos™! (0.707) = 45°.

This result could also have been found using basic trigonometry, but
clearly the inner product method is superior in general (consider find-
ing the angle between vectors with forty components!).

The inner product is often said to measure the "match” or "similarity”"
between two vectors. In a vague sense, this seems to be the case from
the definition of the inner product as the sum of products. Equation 2,
however, shows this in a clearer way: Writing out the equation in
terms of the components of the vectors gives

i"i Wi

i=1

(Fr2yhEwd)h

jm=] i=1

cos 9 =

This is the formula for the correlation between two sets of numbers
with zero means.

We can use our geometrical intuitions about angles and our under-
standing of correlation to turn Equation 2 around and gain a better
understanding of the inner product. This understanding is important
for the analysis of PDP models, because as will be seen, PDP models
often compute inner products. Let us imagine moving two vectors
around in space like the hands on a clock. If we hold the lengths of the
vectors constant, then Equation 2 says that the inner product is propor-
tional to the cosine of the angle: v-w = |v|| |w| cos 8. For example, if
the angle between the vectors is zero, where the cosine is at a max-
imum, the inner product must therefore be at a maximum. As the two
vectors move farther apart, the cosine decreases, thus the inner product
decreases. It reaches zero when the angle is 90° , and its most negative
value when the angle between the vectors is 180°, that is, when the
vectors point in opposite directions. Thus, the closer the two vectors
are, the larger the inner product. The more the vectors point in oppo-
site directions, the more negative the inner product.

We must be careful, however, in claiming that two vectors are closer
together than two others because they have a larger inner product. We
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must remember to divide the inner product by the lengths of the vec-
tors involved to make such comparative statements.

An important special case occurs when the inner product is zero. In
this case, the two vectors are said to be orthogonal. Plugging zero into
the right side of Equation 2 gives

cosd = 0.

which implies that the angle between the vectors is 90°. Thus, orthog-
onal vectors are vectors which lie at right angles to one another.

We will often speak of a set of orthogonal vectors. This means that
every vector in the set is orthogonal to every other vector in the set.
That is, every vector lies at a right angle to every other vector. A good
example in three-dimensional space is the standard basis referred to
earlier. Although we will skip the proof, it is probably clear that any
orthogonal set is linearly independent. Indeed, orthogonality is
stronger than linear independence: whereas every orthogonal set is
linearly independent, there are very many linearly independent sets of
vectors tha l ]c not o hogonal. An example in two-dimensional space

is the pair . When we choose a basis for a space, we typi-

cally choose an orthogonal basis. In fact, in much of classical physics
and mathematics, there is not the slightest hint that a basis should be
anything but orthogonal.

Projections

A further application of the inner product, closely related to the ideas
of length and angle, is the notion of a projection of one vector onto
another. An example is given in Figure 8. The distance x is the pro-
jection of v on w. In two dimensions, we readily know how to calculate
the projection. It is

x = ||v|| cos 8 (€)

where 0 is the angle between v and w. This formula generalizes, and
for any vectors v and w, the projection of v on w is given by Equation
3. It is a scalar which can be thought of as indicating how much v is
pointing in the direction of w.
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FIGURE 8.

There is a close relationship between the inner product and the pro-
jection. Using Equation 2, we can rewrite the formula for the projec-
tion:

x = |v| cos@
= VI /Wl
y-w
wl

Thus, the projection is the inner product divided by the length of w. In
particular, if w has length one, then |w| = 1, and the projection of v
on w and the inner product of v and w are the same thing. This way of
thinking about the inner product is consistent with our earlier com-
ments. That is, if we hold the lengths of v and w constant, then we
know that the inner product gets larger as v moves toward w. From the
picture, we see that the projection gets larger as well. When the two
vectors are orthogonal, the projection as well as the inner product are
Zero.

Inner Products in Two Dimensions

Equation 2 can be shown to be correct in two-dimensional space with
the help of some simple geometry. Let v and w be two vectors in the
plane, and @ be the angle between them, as shown in Figure 9. Denote
the x and y coordinates of v and w by v,, v, and wy, wy, respectively.
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FIGURE 9.

Let / denote the projection of v on w. We have / = |v|| cos§ from
geometry. We can break / into two pieces /, and /, as shown in the fig-
ure. /y can be computed from the diagram by noticing that triangles
OAD and COB, in Figure 10, are similar triangles. Thus, the ratio of
corresponding sides is constant:

h_om
vy wl
giving
[ A
lIwll

FIGURE 10.
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FIGURE 11.

In Figure 11, we see how to compute [, by observing that triangles
EOD and CAB are similar. Thus,

IX wx
e wl
giving
J -l
v

We can now write / = [, + Iy, which yields

Ve Wy VyWy  y-w
+ -
Iwl -~ dwll lwl

[=|v|] cosg =l + Iy =
Thus,

Ccos @ = v_-w_.
vl vl

Algebraic Properties of the Inner Product

In this section, we collect together some useful algebraic theorems
concerning inner products. Most of these theorems can be easily
proved using the definition of the inner product and properties of real
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numbers. In what follows, ¢ and ¢; will be any scalars, and the v and w
will be n-dimensional vectors.

V W=W-V ()
cv-w)=(cv) w=v-(cw) 5
w: W +v)=w- v +w-v, ()

The first theorem says simply that order is unimportant; the inner pro-
duct is commutative. The second and third theorems show that the
inner product is a linear function, as we will discuss at length in a later
section. We can combine these two equations to get
w:vitcev)=c W -v)+c,w-vy. Itis also well worth our
while to use mathematical induction to generalize this formula, giving
us

w- (g vi+ v+ 4 v,) =
oW -v)+e,wW v+ +c, W-v,). (M

This important result tells us how to calculate the inner product of w
and a linear combination of vectors.
Another useful theorem is

v - wl < vl Iwl ®

This is known as the Cauchy-Schwartz inequality. It gives an upper
bound on the inner product.

ONE UNIT IN A PARALLEL DISTRIBUTED
PROCESSING SYSTEM

In this section, we show how some of the concepts we have intro-
duced can be used in analyzing a very simple PDP model. Consider the
processing unit in Figure 12 which receives inputs from the » units
below. Associated with each of the n + 1 units there is a scalar activa-
tion value. We shall use the scalar « to denote the activation of the out-
put unit and the vector v to denote the activations of the n input units.
That is, the ith component of v is the activation of the ith input unit.
Since there are n input units, v is an »n-dimensional vector.

Associated with each link between the input units and the output
unit, there is a scalar weight value, and we can think of the set of n
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FIGURE 12.
| w Fv . w @
1 2 n
FIGURE 13.

weights as an n-dimensional vector w. This is the weight vector
corresponding to the output unit. Later we will discuss a model with
many output units, each of which will have its own weight vector.

Another way to draw the same model is shown in Figure 13. Here
we have drawn the n input units at the top with the output unit on the
right. The components of the weight vector are stored at the junctions
where the vertical input lines meet the horizontal output line. Which
diagram is to be preferred (Figure 12 or Figure 13 ) is mostly a matter
of taste, although we will see that the diagram in Figure 13 generalizes
better to the case of many output units.

Now to the operation of the model: Let us assume that the activa-
tion of each input unit is multiplied by the weight on its link, and that
these products are added up to give the activation of the output unit.
Using the definition of the inner product, we translate that statement
into mathematics as follows:

U=WwW:=* V.

The activation of the output unit is the inner product of its weight vec-
tor with the vector of input activations.
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The geometric properties of the inner product give us the following
picture to help in understanding what the model is computing. We
imagine that the set of possible inputs to the model is a vector space.
It is an n-dimensional space, where n is the number of input lines.
The weight vector also has n components, thus we can plot the weight
vector in the input space. The advantage of doing this is that we can
now state how the system will respond to the various inputs. As we
have seen, the inner product gives an indication of how close two vec-
tors are. Thus, in this simple PDP model, the output activation gives
an indication or measurement of how close the input vector is to the
stored weight vector. The inputs lying close to the weight vector will
yield a large positive response, those lying near 90 ° will yield a zero
response, and those pointing in the opposite direction will yield a large
negative response. If we present a succession of input vectors of con-
stant length, the output unit will respond most strongly to that input
vector which is closest to its weight vector, and will drop off in
response as the input vectors move away from the weight vector.

One way to describe the functioning of the processing unit is to say
that it splits the input space into two parts, the part where the response
is negative and the part where the response is positive. We can easily
imagine augmenting the unit in the following way: if the inner product
is positive, output a 1; if the inner product is negative, output a 0.
This unit, referred to as a linear threshold unit, explicitly computes
which part of the space the input lies in.

In some models, the weight vector is assumed to be normalized, that
is, [w|| = 1. As we have seen, in this case, the activation of the output
unit is simply the projection of the input vector on the weight vector.

MATRICES AND LINEAR SYSTEMS

The first section introduced the concepts of a vector space and the
inner product. We have seen that vectors may be added together and
multiplied by scalars. Vectors also have a length, and there is an angle
between any pair of vectors. Thus, we have good ways of describing
the structure of a set of vectors.

The usefulness of vectors can be broadened considerably by introduc-
ing the concept of a matrix. From an abstract point of view, matrices
are a kind of "operator" that provide a mapping from one vector space
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to another vector space. They are at the base of most of the models in
this book which take vectors as inputs and yield vectors as outputs.

First, we will define matrices and show that they have an algebra of
their own which is analogous to that of vectors. In particular, matrices
can be added together and multiplied by scalars.

MATRICES

A matrix is simply an array of real numbers. If the array has m rows
and n columns, then we will refer to the matrix as an m X n matrix.
Capital letters will be used to denote matrices.

Examples:
345 300 10 -1
001
M is a2 x 3 matrix, N isa 3 x 3 matrix, and P is a 2 X 2 matrix.

Some special matrices. There are several classes of matrices that are
useful to identify. A square matrix is a matrix with the same number
of rows and columns. The matrices N and P are examples of square
matrices. A diagonal matrix is a square matrix that is zero everywhere
except on its main diagonal. An example is matrix N. A symmetric
matrix is a square matrix whose i,jth element is equal to its j,ith ele-
ment. Any diagonal matrix is symmetric. Matrix P is an example of a
symmetric matrix that is not diagonal. Finally, the diagonal matrix that
has all ones on its main diagonal is referred to as the identity matrix,
and is denoted I.

Multiplication by Scalars

A matrix can be multiplied by a scalar by multiplying every element
in the matrix by that scalar.

Example:

345 912 15
3M=3{,01] =13 0 3
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Addition of Matrices

Matrices are added together by adding corresponding elements. Only
matrices that have the same number of rows and columns can be added
together.

Example:

345 [-10 2] [247
M+N=(,01|*t] 4111510

Notice that there is a close relationship between these definitions and
the corresponding definitions for vectors. In fact, for fixed integers
m and n, the set of all m x n matrices is another example of a vector
space. However, we will not exploit this fact, rather, we will think
about matrices in another way, in terms of functions from one vector
space to another. This is the subject of the next section.

Multiplication of a Vector by a Matrix

We now link up vectors and matrices by showing how a vector can be
multiplied by a matrix to produce a new vector. Consider the matrix

1
345
W= [ 0 ly and the vector v = | 0. We wish to define a vector u

2
which is the product of W and v, and denoted

34 5|}
101(]°
2

To define this operation, first imagine breaking the matrix into its rows.
Each row of the matrix is a list of three numbers. We can think of the
row as a three-dimensional vector and speak of the row vectors of the
matrix. There are two such row vectors. Now consider forming the
inner products of each of these row vectors with the vector v. This will
yield two numbers. These two numbers can be thought of as a two-
dimensional vector u, which is defined to be the product W v.

u=Wym=
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Example:

-

The components of u are the inner products of v with the row vectors
of W.

For a general m x n matrix W and an n-dimensional vector v,2 the
product Wy is an m-dimensional vector u, whose elements are the
inner products of v with the row vectors of W. As suggested by Figure
14, the ith component of u is the inner product of v with the ith row
vector of W. Thus, the multiplication of a vector by a matrix can be
thought of as simply a shorthand way to write down a series of inner
products of a vector with a set of other vectors. The vector u tabulates
the results. This way of thinking about the multiplication operation is a
good way to conceptualize what is happening in a PDP model with
many output units, as we will see in the next section.

There is another way of writing the multiplication operation that
gives a different perspective on what is occurring. If we imagine break-
ing the matrix up into its columns, then we can equally well speak of
the column vectors of the matrix. It can then be easily shown that the
multiplication operation Wv produces a vector u that is a linear combi-
nation of the column vectors of W. Furthermore, the coefficients of
the linear combination are the components of v. For example, letting
W1, W5, w3 be the column vectors of W, we have

3-1+4:04 52
1:1+0-0+ 1-2

3 13
1

2 The dimensionality of v must be equal to the number of columns of W so that the
inner products can be defined.

u= v w;+ vWy+ viw3= 1

FIGURE 14.




9. INTRODUCTION TO LINEAR ALGEBRA 389

where the v; are the components of v. This way of viewing the multi-
plication operation is suggested in Figure 15 for a matrix with n
columns.

If we let the term column space refer to the space spanned by the
column vectors of a matrix, then we have the following interesting
result: The vector u is in the column space of W.

Finally, it is important to understand what is happening on an
abstract level. Notice that for each vector v, the operation Wv pro-
duces another vector u. The operation can thus be thought of as a
mapping or function from one set of vectors to another set of vectors.
That is, if we consider an n-dimensional vector space V (the domain)
and an m-dimensional vector space U (the range), then the operation
of multiplication by a fixed matrix W is a function from V to U, as
shown in Figure 16. It is a function whose domain and range are both
vector spaces.

Algebraic Properties of Matrix Mapping

Several properties of matrix-vector multiplication follow directly from
the properties of the inner product. In all cases, the number of

. <
—

Wi ... W, . = v1w1+...+vnwn

< .
=]

FIGURE 15.

FIGURE 16.
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components of the vector must be the same as the number of columns
of the matrix.

W (av) = aWv 9

W@ +v)=Wu+ Wy 10

These equations are the counterparts to Equations 5 and 6. As in that
section, they can be combined and generalized to general linear combi-
nations:

W (C1V1+ cvyt+ 0 + C,,V,,) =

c1(Wvy) + c;(Wy)) + -+ +¢p (Wv,) an

In the next theorem, the matrices M and N must have the same
number of rows and columns.

Mv + Nv=(M + N)v 12)

ONE LAYER OF A PARALLEL DISTRIBUTED
PROCESSING SYSTEM

I now generalize the simple model presented earlier to show how
matrices can be used in analyzing PDP models. Consider Figure 17,
which is the generalization of Figure 12 to the case of many output
units. Suppose that there are m output units, each one connected to all
of the n input units. Denote the activation of the output units by
uy,uy, ..., 4,. Each output unit has its own weight vector w;,
separate from the other output units. As before, the activation rule

FIGURE 17.
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says that the activation of an output unit is given by the inner product
of its weight vector with the input vector, thus,

Uy =W; v,

If we form a matrix W whose row vectors are the w,, then we can use
the rule for matrix-vector multiplication to write all of the computations
at once. Letu be the vector whose components are the ;. Then

u=Wy.

This is a very succinct expression of the computation performed by the
network. It says that for each input vector v, the network produces an
output vector u whose components are the activations of the output
units.

Another way to draw the network is shown in Figure 18, which is the
generalization of Figure 13 to the case of many output units. At each
junction in the diagram there is a weight connecting an input unit with
an output unit.> The weight vectors associated with each output unit
appear on the horizontal lines. When drawn this way, it is clear why a
matrix appears in the equation linking the output vector to the input
vector: The array of junctions in the diagram is exactly the weight
matrix W.

Now let us attempt to understand geometrically what is being com-
puted by the model. Each output unit is computing the inner product

Inputs

w w w (“2)
21 2 ot 2n

FIGURE 18.

3 Note that the weight in the ith row and jth column connects the Jth input unit to the
ith output unit.
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of its weight vector and the input vector (which is common to all out-
put units). Thus, each unit can be thought of as computing how close
its weight vector is to the input vector. A larger activation is attained
the closer the two vectors are. If all of the weight vectors have the
same length, then that output unit with the largest activation will be the
unit whose weight vector is closest to the input vector.

In the model with only one output unit, we imagined plotting the
weight vector in the input vector space. This enabled us to see directly
which input vectors led to a large response and which input vectors led
to a small response. In the model with several output units, we can
generalize by plotting each weight vector in the input space. Now we
can see for each unit which inputs it responds to. If the weight vectors
are spread around in the space, then every input will lead to some
response. Also, the different units will respond to different inputs. If
the weight vectors are assumed to have unit length, then the activation
of the ith output unit is just the projection of v on the ith weight vec-
tor. For a given input, we can draw the projections of the input on the
weight vectors. This gives us a graphic representation of the output of
the network. It should be emphasized, however, that this representa-
tion is useful mostly as a conceptual tool. The graphic approach cannot
be used in most systems, which can have hundreds or thousands of
input lines.

Another perspective on the operation of the model can be obtained
by focusing on the columns of the weight matrix rather than on its
rows. Whereas the rows of the matrix are the weights on the lines com-
ing in to the processing units, the columns correspond to the weights
on the lines going out from the processing units. Each unit on the
lower row in Figure 17 is associated with such a vector: The com-
ponents of the vector are the weights linking that unit with the output
units above. These vectors are referred to as the outgoing weight vec-
tors, as contrasted with the incoming weight vectors which are the rows of
the weight matrix. * In the previous section, it was seen that when a
matrix multiplies a vector, the resulting vector is a linear combination
of the columns of the matrix. This view applies to the PDP model as
follows: The output vector u is a linear combination of the outgoing
weight vectors from the input units. The coefficients in the linear com-
bination are the activations of the input units. Thus, in this perspec-
tive, each input unit multiplies its outgoing weight vector by its activa-
tion, and the resulting vectors are added to yield the output vector of
the system.

In general, as will be discussed further in a later section, a unit can

4 This is not standard terminology, and I will continue to use the term weight vector to
refer to the incoming weight vectors.
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appear in a multilayer system and thus have both an incoming weight
vector and an outgoing weight vector, as shown in Figure 19. In this
case, both views of matrix-vector multiplication can be useful: The unit
can be thought of as matching its incoming weight vector to the current
input using the inner product, and sending the result of this match
multiplied by the outgoing weight vector to the next level.

LINEARITY

A distinction is often made between a linear system and a nonlinear
system. In general, linear systems are relatively easy to analyze and
understand, whereas nonlinear systems can be difficult. In this section,
I will characterize linear systems. Nonlinear systems are defined simply
as everything else. In a later section, I will give some specific examples
of nonlinear systems.

Suppose that there is a function f which represents a system in that
for each input x to the system, the output y is given by

y=f().

The x and y might be scalars or they might be vectors, depending on
the particular system. The function f is said to be linear if for any
inputs x; and x,, and any real number c, the following two equations
hold:

flex) =cfx). (13)
SO+ x) = f () + f(x)). (14)

FIGURE 19.
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The first of these two equations implies that if we multiply the input by
some constant, then the output is multiplied by the same constant.
The second equation is more important. Consider presenting the inputs
x, and x, separately to the system and measuring the outputs. In a
linear system, knowing how the system responds separately to the
inputs is all we need to predict the output of the system when the sum
X1+ x; is presented. We simply add the outputs found separately to
obtain the response to the sum. In a nonlinear system, on the other
hand, we might find that the response to the sum is much larger or
smaller than would be expected based on the inputs taken separately.
The response to the sum might be zero even when strong responses are
obtained separately.

If we restrict ourselves to scalar functions of a scalar variable, then
the only linear functions are those in which the output is proportional
to the input, i.e., for some real number c:

y=cx

However, many systems are scalar or vector functions of a vector input.
For example, for a fixed vector w, the function

U=WwW:-v

is a scalar function of a vector input v. This function is a linear func-
tion because

w-(v)=clw-v)
and
wW:W+v)=w-v,+wW:- vV,

The PDP model with one output unit is an example of such a linear
system.

A system in which the output is obtained from the inpuw by marrix
multiplication is also a linear system, according to Equations 9 and 10.
It turns out that these are the only linear vector functions. That is, if a
function f which maps from one vector space to another vector space
is linear, then it can be represented by matrix multiplication.’

The PDP model discussed in the previous section is an example of a
linear system because it is represented by matrix multiplication. In
such a system, because of linearity, we know what the output will be
when the sum of two vectors is presented if we know the outputs when

5 Let v; be the ith standard basis vector and let w; = f (v;). Then if W is a matrix
whose columns are the w;, f (v;) = Wy for all v.
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the vectors are presented separately. We also know what the output
will be to scalar multiples of a vector. These properties imply that if we
know the output to all of the vectors in some set {v,}, then we can cal-
culate the output to any linear combination of the v,. That is, if
v=cyv;+cy¥y+ -+ + c,v,, then the output when v is presented to
the system is

Wy =W(cyv+cya+ -+ +¢v,)=
1 (Wv) + ¢ (Wvy) + -+ + ¢, (Wy,) 1s)

The terms in the parentheses on the right are known vectors: They are
the outputs to the vectors v;. Thus, we simply multiply these vectors
by the ¢; to calculate the output when v is presented. If the v, are a
basis for some vector space, then every vector in the space is a linear
combination of the v;. Therefore, knowing the outputs of the system
to the basis vectors allows us to calculate immediately the output to any
other vector in the vector space without reference to the system matrix
W. The preceding statement should be studied carefully, because it
expresses an extremely important defining property of linear systems.
Another way to say the same thing is as follows: Imagine that we are
studying some physical system by measuring its responses to various
inputs. The system might be electronic or physiological, for example.
If it is a linear system, then we should first measure the responses to a
set of inputs that constitute a basis for the input space. We then have
no need to make any further measurements. The responses of the sys-
tem to any other input vector can be immediately calculated based on
the measurements that we have already made.

MATRIX MULTIPLICATION AND MULTILAYER
SYSTEMS

The systems considered until now have been one-layer systems. That
is, the input arrives at a set of input units, is passed through a set of
weighted connections described by a matrix, and appears on a set of
output units. Let us now arrange two such systems in cascade, so that
the outpuyt of the first system becomes the input to the next system, as
shown in Figure 20. The composite system is a two-layer system and is
described by two matrix-vector multiplications. An input vector v is
first multiplied by the matrix N to produce a vector z on the set of
intermediate units:

z = Nv,
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«=DZ=Pu=PpT=Ppe

FIGURE 20.

and then z is multiplied by M to produce a vector u on the uppermost
set of units:

u=Mz.

Substituting N v for z yields the response for the composite system:

u=M(Nv). 16

This equation relates the input vectors v to the output vectors u.

We will now define an operation on matrices, called matrix multiplica-
tion, which will simplify the analysis of cascaded systems, allowing us to
replace the two matrices M and N in Equation 16 by a single matrix P.
Matrices M and N can be multiplied to produce a matrix P = MN as
follows: The i, jth element of P is the inner product of the ith row of
M with the jth column of N. Note that the order of multiplication is
important—the product MN is generally not equal to the product N M.
This is to be expected from the asymmetric treatment of M and N in
the definition.

Example:

345 12 (3+8-5) (6+0+5) 6 11
101 20/=|(14+0-1) (2+0+1)|=|0 3
01,2} |-11 (0+2-2) (0+0+2) 0 2

Another way to think about matrix multiplication follows from the
definition of matrix-vector multiplication. Each column vector of P is
the product of the matrix M with the corresponding column vector of
N. For example, the first column of P is computed by multiplying the
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first column of N by the matrix M. This is shown in Figure 21, where
we have explicitly shown the column vectors of N and P.

The product of two matrices is defined only if the number of
columns of the first matrix is equal to the number of rows of the
second matrix. Otherwise, the inner products cannot be formed. A
handy rule is the following: Multiplying an » X s matrix and an s x ¢
matrix yields an r X ¢ matrix.

Let us return to Figure 20 and Equation 16, which describes the sys-
tem. I make the claim that the matrices M and N in the equation can
be replaced by the matrix P, if P is the matrix product of M and N. In
other words,

u=M(Nv)= (MN)v = Pv.

What this equation says is that the two-layer system in Figure 20 is
equivalent to a one-layer system with weight matrix P. For every input
vector v, the two systems will produce the same output vectoru. Thus,
for linear systems at least, the distinction between two-layer systems
and one-layer systems is more apparent than real.$

We can attempt to justify our claim and, in so doing, get a better
understanding of matrix multiplication if we examine the system in Fig-
ure 20 more closely. Let us assume that a matrix P exists which can
replace the cascaded pair M, N, and consider what the element in the
first row and the first column of P should be. This element gives the
strength of the connection between the first component of the input
vector v and the first component of the output vector u. In the cas-
caded system, there are s paths through which this connection can
occur, as shown in Figure 22. We must multiply the weights along
each path and add the values for the paths to get the strength of the
connection in the equivalent one-layer system. This is calculated as

Pu=muyny+mpny+ -+ mgng.
M N P
M nlnz"'ns = Mnan-_,-"Mns
FIGURE 21.

6 The two systems are identical in the sense that they compute the same function. Of
course, they may have different internal dynamics and therefore take different amounts
of time to compute their outputs.
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FIGURE 22.

This equation can be easily generalized to give the strength of the con-
nection between the jth element of v and the ith element of u:

p,j = m”n]j + m,znz, + - + me nsj.

This formula calculates the inner product between the ith row of M
and the jth column of N, which shows that P is equal to the product
MN.

This result can be extended to systems with more than two layers by
induction. For example, in a three-layer system, the first two layers
can be replaced with a matrix (as we have just seen), and then that
matrix can be multiplied by the matrix of the remaining layer to get a
single matrix for the whole system. In general, the cascaded matrices
of any n-layer linear system can be replaced by a single matrix which is
the product of the » matrices.

As a final comment, the definition of matrix multiplication may
seem somewhat odd, especially since it would seem more straightfor-
ward to define it by analogy with matrix addition as the element-wise
product. In fact, it would be perfectly acceptable to define multiplica-
tion as the element-wise product, and then to use another name for the
operation we have discussed in this section. However, element-wise
multiplication has never found much of an application in linear algebra.
Therefore, the term multiplication has been reserved for the operation
described in this section, which proves to be a useful definition, as the
application to multilayer systems demonstrates.
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Algebraic Properties of Matrix Multiplication

The following properties are identical to the corresponding properties
of matrix-vector multiplication. This is to be expected given the rela-
tionship between matrix multiplication and matrix-vector multiplication
(cf. Figure 21).

M (cN) = cMN an
M (N +P)=MN + MP (18)
(N+P)M=NM+PM (19)

EIGENVECTORS AND EIGENVALUES

The next two sections develop some of the mathematics important
for the study of learning in PDP networks. First, I will discuss eigenvec-
tors and eigenvalues and show how they relate to matrices. Second, I
will discuss outer products. Outer products provide one way of con-
structing matrices from vectors. In a later section, I will bring these
concepts together in a discussion of learning.

Recall the abstract point of view of matrices and vectors that was dis-
cussed earlier: The equation u = Wv describes a finction or mapping
from one space, called the domain, to another space, called the range.
In such vector equations, both the domain and the range are vector
spaces, and the equation associates a vector u in the range with each
vector v in the domain.

In general, a function from one vector space to another can associate
an arbitrary vector in the range with each vector in the domain. How-
ever, knowing that u = Wv is a linear function highly constrains the
form the mapping between the domain and range can have. For exam-
ple, if v; and v, are close together in the domain, then the vectors
u; = Wv, and u, = Wv, must be close together in the range. This is
known as a continuity property of linear functions. Another important
constraint on the form of the mapping is the following, which has
already been discussed. If v, is a linear combination of v, and v,, and
the vectors u; = Wy, and u, = Wv, are known, then u; = Wy is com-
pletely determined—it is the same linear combination of u; and u,.
Furthermore, if we have a set of basis vectors for the domain, and it is
known which vector in the range each basis vector maps to, then the
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mappings of all other vectors in the domain are determined (cf. Equa-
tion 15).

In this section, let us specialize to the case of square matrices, that
is, matrices with the same number of rows as columns. In this case,
the domain and the range will have the same number of dimensions
(because the vectors v and u must have the same number of com-
ponents), and the vectors in the domain and the range can be plotted in
the same space. This is done in Figure 23, where we have shown two
vectors before and after multiplication by a matrix.

In general, vectors in this space will change direction as well as
length when multiplied by a matrix. However, as demonstrated by one
of the vectors in Figure 23, there will be some vectors that will change
only in length, not direction. In other words, for these vectors, multi-
plication by the matrix is no different than multiplication by a simple
scalar. Such vectors are known as eigenvectors. Each eigenvector v of a
matrix obeys the equation

Wy = \v 20

where \ is a scalar. \ is called an eigenvalue, and indicates how much v
is shortened or lengthened after multiplication by W.

Example:

e | E I R |

FIGURE 23.
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A matrix can have more than one eigenvector, which, geometrically,
means that it is possible to have eigenvectors in more than one direc-
tion. For example, the leftmost matrix above also has the eigenvector

1
1 with eigenvalue 3, and the diagonal matrix on the right also has the

0
eigenvector I II with eigenvalue 4.

There is another, more trivial, sense in which a matrix can have mul-
tiple eigenvectors: Each vector that is collinear with an eigenvector is
itself an eigenvector. If v is an eigenvector with eigenvalue A, and if
y = cv, then it is easy to show that y is also an eigenvector with eigen-
value A. For the ensuing discussion, the collinear eigenvectors will just
confuse things, so I will adopt the convention of reserving the term
eigenvector only for vectors of length 1. This is equivalent to choosing
a representative eigenvector for each direction in which there are eigen-
vectors.

. 30
Let us now return to the diagonal matrix o 4l We have seen that

1
this matrix has two eigenvectors, [ 0 and 1 with eigenvalues 3 and

4. The fact that the eigenvalues are the same as the diagonal elements
of the matrix is no coincidence: This is true for all diagonal matrices,
as can be seen by multiplying any diagonal matrix by one of its
eigenvectors—a vector in the standard basis. It is also true that this
matrix has only two eigenvectors. This can be seen by considering any

vector of the form

a
b]’ where @ and b are both nonzero. Then we

ERIHEE

Such a vector is not an eigenvector, because the components are multi-
plied by different scalars. The fact that the matrix has distinct eigen-
values is the determining factor here. If the diagonal elements had
been identical, then any two-dimensional vector would indeed have
been an eigenvector. This can also be seen in the case of the n x n
identity matrix I, for which every n-dimensional vector is an eigenvec-
tor with eigenvalue 1.

In general, an #» X n matrix can have up to, but no more than, n dis-
tinct eigenvalues. Furthermore, distinct eigenvalues correspond to dis-
tinct directions. To be more precise, if a matrix has » distinct

have
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eigenvalues, then the n associated eigenvectors are linearly independent.
Although the conditions under which a matrix has a full set of distinct
eigenvalues are beyond the scope of this chapter, it is quite possible to
have matrices with fewer than n eigenvalues, as in the case of the iden-
tity matrix.

I will not discuss how to find eigenvectors and eigenvalues for a par-
ticular matrix, but refer the reader to the books on linear algebra listed
at the end of the chapter. There are several methods, all of which can
be computationally expensive for large matrices. In a later section I
will discuss how to construct a certain class of matrices given a set of
desired eigenvectors.

The goal now is to show how eigenvectors can be used. To do so, let
us begin by assuming that we are dealing with the most favorable case:

an nxn matrix W with n distinct eigenvalues Ay, Ay, ..., A,.
Denote the associated linearly independent eigenvectors by
Vi,V2,..., V.. Recall that if we have a set of basis vectors for the

domain of a matrix, and if we know the vectors in the range associated
with each basis vector, then the mapping of all other vectors in the
domain are determined. The eigenvectors of W form such a basis.
This is because there are n eigenvectors, and they are linearly indepen-
dent. Furthermore, we know the vectors in the range associated with
each eigenvector v;; they are simply the scalar multiples given by
Wy = \v.

To show how to take advantage of these observations, pick an arbi-
trary vector v in the domain of W. It can be written as a linear combi-
nation of the eigenvectors, because the eigenvectors form a basis:

v=cwv+ eyt -+ 0V,
We can now write:
u=Wy
u=W (¢cyv;+ cvy + + ¢V, ).
Using linearity,
u=c,(Wyv)+c;(Wvy)+ -+ +¢, (Wy,).

If we next substitute for each of the quantities Wv;, using Equation 20:

U=CcAV;+ AN+ o+ AV, ¥3))
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Notice that there are no matrices in this last equation. Each term ¢;A; is
a scalar; thus we are left with a simple linear combination of vectors
after having started with a matrix multiplication.

This equation should give some idea of the power and utility of the
eigenvectors and eigenvalues of a matrix. If we know the eigenvectors
and eigenvalues, then, in essence, we can throw away the matrix. We
simply write a vector as a linear combination of eigenvectors, then mul-
tiply each term by the appropriate eigenvalue to produce Equation 21,
which can be recombined to produce the result. Eigenvectors turn
matrix multiplication into simple multiplication by scalars.

It is also revealing to consider the magnitudes of the eigenvalues for
a particular matrix. In Equation 21, all of the vectors v; are of unit
length, thus the length of the vector u depends directly on the product
of the magnitudes of the ¢; and the eigenvalues ;. Consider the vec-
tors that tend to point in the directions of the eigenvectors with large
eigenvalues. These are the vectors with large ¢; for those eigenvectors.
Equation 21 says that after multiplication by the matrix they will be
longer than vectors of the same initial length that point in other direc-
tions. In particular, of all unit length vectors, the vector that will be
the longest after multiplication by the matrix is the eigenvector with the
largest eigenvalue. In other words, knowledge of the eigenvectors and
eigenvalues of a system tells which input vectors the system will give a
large response to. This fact can be useful in the analysis of linear
models.

TRANSPOSES AND THE OUTER PRODUCT

The transpose of an n x m matrix W is an m x n matrix denoted
WT. Thei,jth element of WT is the j,ith element of W.

Example:
345" |31
102 =40
52

Another way to describe the transpose is as follows: The row vectors of
WT are the column vectors of W, and the column vectors of W7 are
the row vectors of W.
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Algebraic Properties of the Transpose

(WH)T =W

(cW)T =cWT
(M+N)T=MT +NT7
(MN)T =NTMT

If a matrix is its own transpose, that is if W7 = W, then the matrix is
symmetric.

Outer Products

Before discussing outer products, let me attempt to ward off what
could be a confusing aspect of the notation we are using. Consider, for
example, the entity below. Is it a matrix with one column or is it a
vector?

3
1
2

The answer is that it could be either—there is no way of distinguishing
one from the other based on the notation. There is nothing wrong with
this failure to distinguish between vectors and n x 1 matrices for the
following reason. In equations involving vectors and matrices, the
same results will be obtained whether entities such as the one above are
treated as vectors or as matrices. This is true because the algebra for
vectors and matrices is exactly the same, as a review of the relevant
earlier sections will show. Thus, as long as we are simply interested in
calculating values and manipulating equations, there is no need to dis-
tinguish between vectors and n x 1 matrices. Rather, by treating them
as the same thing, we have a uniform set of procedures for dealing with
all equations involving vectors and matrices.

Nevertheless, on the conceptual level, it is important to distinguish
between vectors and matrices. The way we are using the terms, a vec-
tor is an element in a vector space, whereas a matrix can be used to
define a linear mapping from one vector space to another. These are
very different concepts.

With this caveat in mind, we will continue to take advantage of the
uniformity of notation, blurring the distinction between a vector and an
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n x 1 matrix. For example, for every n-dimensional vector v, we can
form the transpose v, which is simply a matrix with one row. We can
then form the product v7u, where u is any n-dimensional vector, as in
the following example.

Example:
0
v=]1 u=|4
2 1

viu=[3 1] 3 -|¢]
1

Notice that the result has only a singie component, and that this com-
ponent is calculated by taking the inner product of the vectors v and u.
In many applications, there is no need to distinguish between vectors
with one component and scalars, thus the notation v Tu is often used
for the inner product.

Let us next consider the product uv”. This is a legal product
because the number of columns inu and the number of rows inv 7 are
the same, namely one. Following the rule for matrix multiplication, we
find that there are n? inner products to calculate and that each inner
product involves vectors of length one.

Example:

1 312
wvT=14|[312]=|12438
0 000

The i, jth element of the resulting matrix is equal to the product ; v;.

For those who may have forgotten the noncommutativity of matrix
multiplication, this serves as a good reminder: Whereas the product
v Tu has a single component, a simple change in the order of multipli-
cation yields an n X n matrix.

Products of the form uv 7 are referred to as outer products, and will
be discussed further in the next section. Note that the rows of the
resulting matrix are simply scalar multiples of the vector v. In other
words, if we let W be the matrix uv 7, and let w; be the ith row of W,
then we have

W, = u,-V

where u; is the ith component of the vector u.
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