Modeling Sequential Processes
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Simple Sequential Processes

 Sequences of Events: State Dynamics
» Sequences of Responses
» Sequences of Decisions

Auto Fegressive model AR(1)
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Time Series Data
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Time Series Data with Hidden state
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ECG Data with Hidden State

Nicotine Inhalation
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Anomaly detection
(When) is there an anomaly?

This is a time series of counts
of primary-physician visits in
data from Norfolk in December
2001. | added a fake outbreak, T
starting at a certain date. Can
you guess when?

SAT {155 D N B E'F T LA TR THL] AT =178 -] FIED
CVE O — 0 LT CHEN R RN ) STl TR =) STl | SRR R || SEHER T TR L 59— =2 00 L
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Did you get it right?
(When) is there an anomaly?

Here (much
This is a time series of counts too high for a

of primary-physician visits In Friday)
data from Norfolk in December
2001. | added a fake outbreak,
starting at a certain date. Can
you guess when?

(Ramp attack)

- J
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Signal

An easy case

-—

Time .

Dealt with by Statistical Quality Control

Record the mean and standard deviation up
the the current time.

Signal an alarm if we go outside 3 sigmas
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Dealt with by Statistical Quality Control

Record the mean and standard deviation up
the the current time.

Signal an alarm if we go outside 3 sigmas
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Control Charts on the Norfolk Data
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Time series Inference Tasks

»  Structure detection » How do we solve these
10001000100010001000 problems?
— Find a simple model for
) behaVIOrChoose between Use Time series models:

models for behavior s = f(past) + noise

+  Prediction where
101010010107 s =stateattime T

*  Anomaly detection Future predictable from the past:
100010001019. sr=({81 5,85 S4hl
abcdefghijklmuop s = f(past) + noise
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Time Series Data

* You are given a collection of labelled points in some

order: { (y1,X1), (Yo, Xo)s---., (Yn X) }. (€.9. X; are
category labels, y. are measurements).

* |n time series data, independence is violated.

PV YVasees Vs X Xgseenn X, ) = p(y, LX) p(y, 1 X,) p(y, 1)
 |ntime series data, order matters.

Basic decomposition for any distribution
POV X5 X5 Yoo Vs X, ) = P(V X, 12X, 1Y ees Vi X))

P15 Yo X 00 Y asees Y1 X)) POy L)
Markov Assumption

P(Vs X5 X3 Vaseees ¥, 0 X, ) = Dy, X, 1 X, _ v, Dp(x,_ ¥y, 1x, 5.y, ) plyx)
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Describing Sequential States

F(Xn — Si‘Xn—l Eou o Xﬂ‘j — ..'i'} = {i.

S 1s discrete or continuous
Independence
F{Xn - SI|Xﬂ—l S Xn—j - Fj - p{Xn = 51-}'—

Stationarity
F[Xn - SI.XH_I o X.I'I"j — '5.} — F{Xm = SiiXm—l o Xm—j — j}:

Markov
p(Xﬂ = SE|XH—1 L Xn—j - ‘F} — p(Xn — S:‘|Xn—1 — 5_:}:
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A Markov System

Has N states, called s, s, .. 59

There are discrete timesteps,
t=0, t=1, ...
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A Markov System

Has I states, called s4, 55 .. sy

There are discrete timesteps,
t=0, t=1, ...

On the t'th timestep the system is

rrent State In exactly one of the available
states. Call it g,

Note: q; €{S4, S5.. Sy }
N=3

t=0
q:=4p=54
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P(0144=84/057s2) = 1/2

va =siaesn =12 |A Markov System

P(Q,,1=54/0=S,) = 0 Has N states, called s4, s5.. sy

P(01s1=54]0=54) = 0 There are discrete timesteps,
P(0w1=82/0=54) = U t=0, t=1, ...
P(du1=53]9=54) = 1 On the t'th timestep the system is

In exactly one of the available
states. Call it g,

Note: g; e{sy, So .. Sp; }

N=3 Between each timestep, the next
=1 Pl0u1=54178;5) = 13 |state is chosen randomly.
P(0y.1=5,/0,=S,) = 2/3 _
q,~q,=s, {q‘”_szlqt_sa} ~_ [The current state determines the
"1 75519 S5) = 0 probability distribution for the
next state.
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P(Q1=54/0=S,) = 1/2

)
o e 1o | A Markov System
)

P(a.1=S5ld=s,) =0 | Has N states, called s, s, .. s

There are discrete timesteps,
t=0, t=1, ...

P(0y1=84]0=84) = 0
P(0y.1=85/0,=84) = 0
P(01.1=53|0=54) = 1

On the t'th timestep the system is
In exactly one of the available
states. Call it g;

Note: g, €{sy, S,.. Sy }

N=3 Between each timestep, the next

t=1 Pl01=5419=S3) = 1/3 |state Is chosen randomly.

9.=0,=s, "9n=Sa9789) = 25 rhe current state determines the
Tl01780978) = U Inrobability distribution for the

e e ext state.
between states



P(Qi4+1=54/9S2)
{qt+1 = szlch 2}
) =

P(04,4=5;/0,=5;

P(0.1=54|0F
Pl{0w1=5219=
Pl0w1=530=

84) =0
§4) =0
84 =1

N=23
t=1
q4:=41=Sy

Pl0u178410,783) = 113 ||
P{ql+1=52|qt=53} =213

P(04,4=55/0,=8;) = U

Markov Property

di+1 1S conditionally independent
of { Ayy. Gea. --- Gy, Ao } Given g,

In other words:
P(Qu = 5|9 =8;) =
P(Qysq = S, |q, = S, ,any earlier history)

Question: what would be the best
Bayes Net structure to represent
the Joint Distribution of ( qp, g4,

. (3.4 )7
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P(Q;,1=5,10,=S,) = 1/2

Answer:

»| Markov Property

D | q,,4Is conditionally independent

Of { Qy1; Qi2: --- 91, Go } gIVeN q,.

1/2] In other words:

P(Qes1 = 5,10 = 8) =

P(Qi+1 = S;|0; = S;,any earlier history)

Question: what would be the best
\?yes Net structure to represent
e Joint Distribution of ( q,. 9.
(2.93.94 )7

/3
F 0

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2004



A Blind Robot

A human and a
robot wander

- around randomly
— on agrid...
"
R
H
STATE q = Location of Robot.

Location of Human
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Dynamics of System Egach timestep the

human moves
R randomly to an
adjacent cell. And
Robot also moves
H randomly to an
adjacent cell.

do —

Typical Questions:

«“What's the expected time until the human is
crushed like a bug?”

*“What's the probability that the robot will hit the
left wall before it hits the human?”

*"What's the probability Robot crushes human
on next time step?”
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Example: The Dishonest Casino

A casino has two dice:

« Fairdie

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
« Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10

P(6) = 1/2

Casino player switches back-&-forth between fair and
loaded die once every 20 turns

Game:

1. You bet $1

2. Youroll (always with a fair die)

3. Casino player rolls (maybe with fair die, maybe with

loaded die)
4. Highest number wins $2
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Problem 1: Evaluation
GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344
QUESTION
How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem
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Problem 2 — Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344
QUESTION

What portion of the sequence was generated with the fair die, and what portion
with the loaded die?

This is the DECODING question
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Problem 3 — Learning
GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often does the
casino player change from fair to loaded, and back?

This is the LEARNING question
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The dishonest casino model

0.05
0.95 0.95

LOADED

P(1IF) =1/6 P(1IL) =1/10
P(2IF) =1/6 0.05 P(2IL) =1/10
P(3IF) =1/6 ' P(3IL) =1/10
P(4lF) =1/6 P(4IL) =1/10
P(5IF) =1/6 P(5IL) =1/10
P(6IF) =1/6 P(6IL) =1/2
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« HMM is specified by:

_ transition probabilities p (¢’

[
dn—1 ) = a’[j
- (initial state probabilities p(qfl) =T

- emission distributions p(x|q’f) =b.(xX)

- states ¢! © ® @ © o
k a t -
Cyen } " ' «[1.0 0.0 0.0 0.0
- transition ~b~ar~(ty~ k|09 010000
probabilities ;; al|0.0 0.9 0.1 0.0
- t10.0 0.0 0.9 0.1

| | ¢
® 0 @ 0 ©

- emission

distributions b;(x)
*'ffIA J& LA,



Markov models for speech

e Speech models Mj

- typ. left-to-right HMMs (sequence constraint)

- observation & evolution are conditionally
independent of rest given (hidden) state ¢,

Oyt~

- self-loops for time dilation
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Types of Sequential State Models

G —(2)

Switching AR model Kaliman filter model

switching Kalian filter

Y: Observed
X: State
Q: Discrete State (e.g. Decision)
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Transition matrix where initial state matters

S S 8 S,
[Py P12z O 0
P21 P22 O 0

0 0 P3s p3al|

B 0 0 Paz Paa

| R—

b b

£

State update

F F[ 2 1
p(F) o) [0 PO — (e p)
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Guessing Games

“Belief in the law of Small Numbers”

Guess the next:
— HTHHHH
— HHHTTT
~ HTHTHT

Rule 1: Estimating the frequency
Rule 2: Using serial prediction
Rule 3: Estimating the likelihood
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All-or-None Learning Models
5, The preinsight state
>; The postinsight state
X. Animal’s current state
X;=058, for i<k,
X; =S58, ftor =k

N
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All or None Learning Models

Observer generates a set of different sorting hypotheses
Color, Mixture of Suits, Face vs Number, etc.
Observer tries a hypothesis and told 1f sort 1s correct

S1 = Incorrect Hyp, Told Incorrect

S2 = Correct, Told Correct

Random Hypothesis S, S,
Selection Model 1 1 (m—1)/m 1,.-’&:]' Stationary

S, 0 1

S S,
Process )
C S —n)(m—n+1) l/(m—n+1)
of Elimination @ Model 2: c;‘ [(m ) {-:} [
2

Non-Stationary
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Response Models

Card Sorting: subject has to determine sorting rule,
seeing two cards lying face up.

Sort by color R-B
Observer’s X = Card
S1 ={2H,2D, ...., AceH,AceD}
S2 ={2S,2C, ...., AceS,AceC}
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Sequential Games

C = Cooperate

D = Defect
Player 2
C [
C +0.25, +0.25 —1.00, +1.00
Player 1
D +1.00, —1.00 —0.25, —0.25
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Male-Female Pair-off Differences
(Rapoport & Chammah)

TABLE 8.1 PROPORTION OF COOPERATIVE AND DEEFECT-

ING STRATEGIES OF DIFFERENT TYPES OF
FPAIRS

p(CC) p(CD) p(DC)  p(DD) p(C)

MM 51 08 .09 32 .59
WM 40 10 10 41 49
Ww 23 11 11 33 .34
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Additional Analysis

p(C|C,_,, C,_,): The probability an individual makes a cooperative
choice on trial n given hoth he and his opponent made a cooperative choice
on trial n -1

p(C,|C,_,. D;_,): The probability an individual makes a cooperative
choice on trial n given he made a cooperative choice on trial #—1 and his
opponent made a defecting choice

p(C,\D,_,, C._,): The probability an individual makes a cooperative
choice on trial n given he made a defecting choice on trial n—1 and fus
opponent made a cooperative choice

p(C, D,_,, D, ,): The probability an individual makes a cooperative
choice on trial » given both he and his opponent made a defecting choice on
trial n—1
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MM

WM

WW

Fig. 8.4 Estimated probability

Data

PCIC, (. Cy o) | PG IC, .0, ) MCID, . G ) | DD, D)
0.85 0.40 0.38 0.20
0.79 0.42 0.31 0.22
0.75 0.37 0.26 0.15

conditioned on the preceding choices.
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Belief in Sequential Response
Dependence

The Cold Facts About the
“Hot Hand” in Basketball

Amos Tversky and Thomas Gilovich

Do Players hit shots 1n streaks?

Reasonability: Recalibration
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Beliefs

agreement: 9196 of the fans believed that a player has *‘a better chance
of making a shot after having just made his last two or three shots than
he does after having just missed his last two or three shots®: 689 of the
lans expressed essentially the same belief for free throws, claiming that
a player has **a better chance of making his second shot after making his
first shot than after misyving his first shot™; 96% of the fans thought that
“alter having made o series of shols in a row . . . plavers tend to take
more shots than they normally would™; 34% of the fans believad that **it
IS important to pass the baii to someone who has just made several {twa,

three, or four) shots in a row."’
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Conditional Prob for Players

TABLE |
Probability of Making a Shot Canditioned on the Outcome of Previous Shots for Nine Members of the Philadelphia 76ers
' Serial
correlation

Player Prhiv3 misses) Prhiv'2 misses) Pihiv'! miss) Pthit) Plhit/! hit) Pihv'Z hats) Flays hats) r
— . -

Clint Richardson S0 A7 (32 S6 100 .50 (248) .49 (105) S0 (46) A% (21) 02
Julius Erving 52 (50 SHen 51 1408) 52 (884) .53 (428) S22 A8 (97) Q16
Lione!l Hollins 50 (40) 49 (92) 16 (200) 46 (419) A6 (171 46 (65) 32(25) -~ 004
Moaurice Cheeks FT 1% 60 (38) A0 (126) 55 (339) S5 1166) 54 (76) 590 = 038
Caldwell Jones S0 20 A8 (48) AT A7 (272} A5 (108) 43 N 2700 -.06
Andrew Toney S52433) 53 (%) S1216) 46 (451) A3 (190 A0 (77) 3429 - .083
Bobby Jones R IRPS)] AR (66) S8 (179 54 (433) 53(207) AT (196) 53 (36) - .49

Steve Mix .70 (20) 56 (54) 52 (141 S23s1) S11183) A8 (T 36 (33) s

Daryl Dawkins B8 (8) J3 (33) J1(136) .62 (403) 57 (222) S8 (110 51 (55) -.142
Weighted means 56 53 54 2 Si 20 A6 -.039

Note. Since the first shot of each game cannot be conditioned. the parenthetical values in columns 4 and 6 do not sum to the parenthetical value in column 5. The number
of shots upon which each probability is baced i given in parentheses
*p < 05,
5= 0L

Philadelphia 76ers 1980-81 season
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Runs Test

TABLE 2
Huns Test— Philadelphia 76ers

Mumber Expeoted

of number of

Players Hils Misses runs runs ¥
Clint Righardson 124 124 128 115.0 =038
Julius Erving 459 425 431 4472 .4 0.76
Lionel Hollins 194 225 203 209.4 0.62
Maurice Cheeks 189 150 172 168.3 —0.41
Caldwell Jones 129 143 134 136.6 0.32
Andrew Toney 2R 243 245 225.1 -] .88
Hobby Jones 213 200 227 216.2 Co=1.04
Steve Mix 151 170 176 i76.3 0.04
Daryl Dawkins 250 i53 220 1908 =3,09%

M = 218.6 203.7 215.1 210.0 =056
*p o= 05,
= n o 01,

Runs: consecutive hits or misses
X000XX0 =>4 “runs”
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Free Throw Data

TABLE 3
Probability of Making a Second Free Throw Conditioned on the Untcome of the First
Free Throw for Nine Members of the Boston Celtics during the 19801981 and
1981 - 1982 Seasons

Serial
correlation
Player PiH /M, PH.H,) r

Larry Bird A1 (33) B8 (285) - .032
Cedric Maxwell 6 (128) Bl (302} Al
Rohert Parish 72 (108) v kY 056
MNate Archibald B2 (76) B (245) 014
Chris Ford g7 (22) J1 (51) - (G
Eevin McHale 59 (49) TI3(128) A30
M. L. Carr Bl (26) BE (5T - 128
Rick Robey Al (RO A9 (B} =y

Cerald Henderson T8 {37 - JTET101) - 022

—

Nate. The number of shots upon which each probability is based 15 given in parentheses.
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100 e——a CHANCE
- -8 STREAK

i)
i

o=
=

PERCENT OF FAMS

PROBABILITY OF ALTERNATION
Fig. 1. Percentage of bazkethall fans classifyving sequences of hits and misses as examples

of ¢ireak shooting or chance shooting, a8 a function of the probablity of alternation within
L& Séqueénces.

Probability of Alternation
P(HIMiss)
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Erroneous “Law of small numbers”

Kahneman and Tversky (1982a, p. 44) illustrate how people expect close to the same probability
distribution of types in small groups as they do in large groups, asking a group of undergraduates

the following question:

A certain town is served by two hospitals. In the larger hospital about 45 babies are
born each day, and in the smaller hospital about 15 babies are born each day. As you
know, about 50 percent of all babies are boys. However, the exact percentage varies
from day to day. Sometimes it may be higher than 50 percent, sometimes lower. For a
period of 1 year, each hospital recorded the days on which more than 60 percent of the
babies born were boys. Which hospital do you think recorded more such days?

22% Larger hospital = more days over 60
56% The same
22% Smaller hospital => more days over 60
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Producing Random sequences

Rapoport and Budescu (1992, 1997, 1994)

asked subjects
- “simulate the random outcome of tossing an unbiased coin 150

times in succession,”

- “Imagine a sequence of 150 draws with replacement from a
well-shuffled deck, including five red and five black cards, and
then call aloud the sequence of these binary draws.

Pr(A| B) 58.5%

Results Pr(A | AB) 46.0%
Pr(A| AAB) 38.0%

Pr(A| AAA...) 29.8%
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Can we produce random sequences in

games?

Walker and Wooders (1999)
final and semi-final matches at Wimbledon

“Our tests indicate that the tennis players are not quite
playing randomly: they switch their serves from left to right
and vice versa somewhat too often to be consistent with
random play. This is consistent with extensive experimental
research in psychology and economics which indicates that
people who are attempting to behave truly randomly

tend to “switch too often.” “

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2004



Perception of Randomness

Randomness and Coincidences:
Reconciling Intuition and Probability Theory
Thomas L. Griffiths & Joshua B. Tenenbaum

Randomness as a rational inference - Belief that most sequences have
non-random causes

P(random|x)
LF
~ P(regular|x)
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Zenith Radio “Psychic transmissions”

Zanith Radio Data

0.z

015F n

Probability
=

0.05

Randomneass model
0.2

0.15

Probability
[}

0.05

01000
01001
01010
01011
01100
01101
01110
o111

2 5 8 = B 5 B
S 2 o o = = =
S &8 &8 a8 o o o
& &8 a a & & &

Qo111

Figure 1: The upper panel shows the original Zenith radio
data, representing the responses of 20.099 participants, from
Goodfellow (1938). The lower panel shows the predictions of
the randomness model. Sequences are collapsed over the initial
choice, represented by 0.

. _ 1, Spring 2004



Kubowvy and Psotka (1976)

Probability
= = =
ka3 el =N

=
-

Randomness maodel
T T T T T T T T T T

0 1 2 3 4 5 &3 T 2 0
Number

Figure 2: The upper panel shows number production data
from Kubovy and Psotka (1976). taken from 1,770 participants
choosing numbers between 0 and 9. The lower panel shows the
transformed predictions of the randomness model.
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1-D Random Walk

H?Hﬁp
| | | |

X(t)

* Time is slotted

 The walker flips a coin every time slot to decide
which way to go
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Transition Probability

Probability to jump from state / to state J
Assume stationary: independent of time
Transition probability matrix:

P = (p;)
Two state MC:

p_(1—-p p
qg 1l—gq
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Stationary Distribution

Define
Then =, =m P (misarow vector)

Stationary Distribution:

if the limit exists. T (1) = Pr{X; =i}

T = |imk_>oo7'('k

If 7 exists, we can solve it by

m=aP, >,mw()=1
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Balance Equations

* These are called balance equations
— Transitions in and out of state / are balanced
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In General

If we partition all the states into two sets, then
transitions between the two sets must be “balanced”.

— Equivalent to a bi-section in the state transition graph
— This can be easily derived from the Balance Equations
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Conditions for mt to Exist (I)

» Definitions:
— State j is reachable by state i if

— State 1 and j commute if they are reachable by each other
— The Markov chain is irreducible if all states commute
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Conditions for st to Exist (l) (cont'd)

* Condition: The Markov chain is irreducible
 Counter-examples:

ollo

-
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Conditions for mt to Exist (I1)

» The Markov chain is aperiodic:
» Counter-example:
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Conditions for st to Exist (lI)

* The Markov chain is positive recurrent:
— State i is recurrent if

— Otherwise transient

— |f recurrent

» State jis positive recurrent if E(T))<1, where T;is time
between visits to state

* Otherwise null recurrent
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Solving for
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