Decision Theory: Action Problems
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Decision theory goes Bad?

And thus the native hue of resolution
Is sicklied o'er with the pale cast of thought,

And
Wit

enterprises of great pith and moment
1 this regard their currents turn awry,

And

lose the name of action.--
Shakespeare-Hamlet
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Modeling a Decision task

Modeling the outcome space
— What outcomes are likely to influence the decision

Modeling the event space

— What events are relevant to the behavior
« Causal
« Contextual

Modeling the beliefs
— Given relevant event space, determine probabilities

Modeling utilities
— Assigning worth to outcomes on a common scale
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Perception vs. Action

* Perceptual Utility functions
— Minimize Errors
— Possible exception- Geographical slant estimation

* Action Utility functions
— Minimize energy expenditure (Trajectory selection)
— Minimize endpoint error (Trajectory selection
— Maximize information gain (eye/head movements)
— Minimize collisions (Exploratory navigation)

— Questions-
« Facial movements

« Speech movements
* Skiing?
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Action Decisions

(b)
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Fig. 1. Michael Ballack’s goal during the 2002 World Cup. (a)
Ballack, must rapidly decide where to shoot. (b) A schematic of
factors affecting the decision.
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Reaching for an object

Outcomes
State space

Beliefs

Values
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Decision tasks

»  Ski downhill

— Space of outcomes
— State space

— Beliefs

— Values
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Many-to-one
Causality

One-to-many
Redundancy

Meural
Commands

Muscle
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Motor Control is Hierarchical

The levels in the motor hierarchy are
shown with the triangles between the
levels indicating the reduction in the
degrees of freedom hetween the higher
and lower levels. Specifying a pattern of
behavior at any level completely specifies
the patterns at the level below (many-to-
one: many patterns at the higher level
correspond to one pattern at the lower)
but is consistent with many patterns at
the level above (one-to-many). Planning
can be considered as the process by
which particular patterns, consistent with
the extrinsic task goals, are selected at
each level. From $Wolpert, 1997).
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Movements show typicality
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Figure 3. a) observed hand paths for a set of point-to-point movements from (Uno et al., 1989)
(W fith permission ). The coordinate system is centred on the shoulder with @ and y in the transverse

and sagittal directions respectively. b) observed velocity profiles for movements from T1 to T3 in
a). Reprinted with permission from (Uno et al., 1989
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Optimal control theory as decision theory
with dynamics (sequential decision problem)

Decisions may occur at each time step in a movement. Thus the
utility function must be specified at each time.
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Utility of action sequences

Best movements maximize total utility
— every possible movement which can achieve a goal has a utility
— we select the movement with the highest utility

. | 1 2 3 4 5 | 6 7 8 9
T 1 _______________________ b T
rave lng 1 Chicago IL | 203 748 954 579 | 712 672 997 400
2 Towa City IA | 203 946 858 665 | 914 873 1070 222
3 Burlington VT 748 946 1595 938 264 317 1240 1147
Salesman g | |
4 Houston TX | 954 858 1595 727 | 1433 1368 807 670
5 Atlanta GA | 579 665 938 727 | 732 666 418 676
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6 New York NY | 712 914 264 1433 732 | 66 992 1085
o 7 Philadelphia P& | 672 873 317 1368 666 | 66 929 1036
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Minimal Energy Models for movement
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Previous (incorrect) costs

Saccadic eye movements Arm Movements

little vision over 4°/s - Are smooth
saccades >200°%/s

frequent 2-3 /sec each ~60ms
deprives of vision ~90 min/day

_ = Minimum jerk
1,&;.%}'!‘&:& (rate of change of acceleration)
—Minimize time — Minimum torque change

Criteria for cost for goal-directed movement

. Makes sense in terms of advantage for evolution & leaming

. Simple for CNS to measure

. Generalizes to different systems e.g. eye, head, armm

. Generalizes to different tasks e.g. pointing, grasping, drawing

» Reproduce & predict behaviour
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Utility Functions for reaching

Simple utility function- Minimum Jerk
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Solution has the form:

2507
—EDD [
Model predicts bell-shaped |
velocity profile. .
No role for uncertainty. = el
[:l A M M
] 100 200 300

Time (ms)
PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2004



Task/Goal Achievement?

Fundamental constraint=Signal-de pendent noise

3 gral-dependai noisa

12

« Signal-dependent noise:

— Constant coefficient of variation
— SD (motor command) ~ Mean (motor command) *

a

* Evidence from o &
— Experiments: SD (Force) ~ Mean (Force) E Al
~ Modelling S
« Spikes drawn from a renewal process *E ’
g

* Recruitment properties of motor units

(Jones, Hamilton & Wolpert, J. Neurophysiol., 2002)

Time



Position
clistribution

Movement A Movement B

Fig. 2. Task optimization in the presence of signal-dependent noise
(TOPS) model of Harris and Walpert?, Average paths and expected final
position distributions for two different motor sequences, Although the
sequences bring the hand on average to the same final position, they
have different final distributions because of noise in the motor com-
mands. Moverment A has smaller spread than B and therefore has lower
cost than B. In general, the task determines the desired statistics of the
PSY movement, and the trajectory that optimizes the statistics is selected.



Signal-dependent noise and task achievement

. Desifed command | =« Actual command
1 i
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Sequence of motor commands — probability distnbution (statistcs) of movement.

The statistics of action can be controlled by changing the motor command
Task = Optimizing f(statistics)

(Harris & Wolpert, Nature, 1998)
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Projectile
Actions
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Figure 8. (a) An “archery” problem. (b) The parabolic relationship between distance traveled
(y) and angle (u) for a projectile. For each value of y there are two corresponding values of w,
symmetrically placed around 45 degrees.
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Model State space

» Reach endpoint
» Reach trajectory?

* Model beliefs on endpoint
— Planned endpoint plus 2-D gaussian noise
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Model Outcomes

Land in circle O: RO

@D@ Land incircle 1: RI1
’ Reach too long: timeout
\ﬂ Energy for reach: B(X,y)

Action = (X,y)
Multi-Attribute Utility:

Energy
Timeout
Rewards

Minimize Expected Utility:
V(x,y) =U(Ro)P(Ro | x,y)+ UR)P(R, | x,y)
+ U(timeout) P(timeout | x,y) + U(B(x,y))P(B | x,y)
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Simulate Optimal Pointer
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points per trial
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Fig. 2. “Landseape” of expected gain for an sptimal observer with a varianee of o+ ? = 4.85 (matching that of subject 82 in experiment
13 {a) Expected gain (in points per trial) as a function of the mean movement end point (x, ¥3.  The distribution i= truncated for scores
= —G0 points. (b The same landscape replotted as a contour plot with the mean movement end point of subject 52 (open squares)
comparad with optimal performance az predicted by the model [the contour regiong are coded with the same grav-level acale as in (ai].
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Task - Touch the screen

touch
- 20 cm ! :
screen i, = chin rest

GB monitor \
-t

I 26 cm

keyboard




1. Start of trial:

Display of fixation
cross (2 sec)

| =

4. Touch of
screen:
Recording of touch
location, reaction and
moverment tnne

e

| |1

| S—
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2. Target

display (red):
Display of red target
500 ms betore display

of green target

I =

%

5. Feedback on

target value:

| ]

| S—

3. Target
display (green

Display of green targ:

tor maximal 750 ms

| =

O

6. End of trial:

Display of current
cumulative score

END OF TRIAL

Current score; —500

i
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Fig. 3. Lavout of the stimuli in experiment 1. The six dashed
regions indicate the six different positions at which the target
could appear.
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Fig. 6. Experiment 1, results for five aubjects, listed in order of
motor variability, for penalty conditions 0, 100, and 500. The

values plotted on the vertical axis are average scores per target
position displaved az a percentage of optimal performance pre-
dicted bv the model for penalty = 0. Normalizing in this way
malkes it easier to compare performance of subjects with different
motor variabilities.  The horizontal axiz 15 the target position

Xtmeet polative to the penalty region.  Model predictions based on
cach subject’=s variability were computed.  The curves (one per

subject) reprezent the model predictions.
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Eye movements

» Qutcome space
— End point accuracy- foveate target
— Acquire relevant target information

» Event space
— Eye position
— Target identity
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Fig. 2. A profile of
decision-related activity in
the frontal eye fields
during a simple oddball
detection task.

(a) Monkeys detect the
oddball and shift gaze
towards it with a variety of
reaction times. (b) The
black line plots average
firing rate for frontal eye
field neurons during trials
on which the location of
the cddball target was
positioned to elicit the
best movement of the
neuron under study. The
red line plots average
firing rate on trials in
which the oddball was
positioned to elicit
movements for which the
neuron was unmodulated.
For movements with fast
reaction times, neuronal
firing rates on these two
types of trials begin to
diverge about 80 ms after
target onset. Surprisingly,
for medium and slow
movements, firing rates
for best moverment and
other movement trials
also diverge at about

80 ms (data not shown).
(c) When average firing
rates on best movement
trials are plotted for fast,
medium and slow
movements, it is found
that movements (data not
shown) begin a fixed
interval after the neurons
reach a crucial firing rate
or threshold. Adapted,
with permission, from
Ref. 10.
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TRENDS in Neurosciences

Fig. 4. Outline of the visual-saccadic decision-making model proposed
by Shadlen and his colleagues. On each trial, the responses of

N neurons responding to upwards visual stimulus motion and

N neurons responding to downwards motion are poaled. Intersecting
lines indicate that the responses of neurons responding to the same
direction of motion are weakly correlated. Average responses are
compared and the larger signal elicits the movement required by the
task for that direction of stimulus motion. Reproduced, with
permission, from Ref. 22.

where to look!®-21. In these experiments, monkeys
viewed a display of chaotically moving spots of light in
which, on any given trial, a subset of the spots moved
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Fig. 5. The probability that a monkey will be instructed to make a particular movement modulates the
neurconal activity associated with that movement in the lateral intraparietal area. (a) Average firing
rate of an intraparietal neuron ontrials that all elicited the best movement for the neuron under study.
The red line plots trials on which the best movement was instructed with an 80% probability. The blue
line plots trials on which the best movement was instructed with a 20% probability. Raster panels
show spike times during the first 20 trials of each type. Black arrows indicate, from left to right,
average time of the cue that indicated which movement would actually be required on thattrial, and
average time of saccade onset. (b) Mean firing rate for the same neuron after stimulus onset. Graph
plots neuronal firing rate against the seven different prior probabilities studied in this neuron. Gray
bar in (a) shows approximate time of the measured interval. Adapted, with permission, from Ref. 27
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