Vision as Optimal Inference

* The problem of visual processing can be thought of as
computing a belief distribution

» Conscious perception better thought as a decision
based on both beliefs and the utility of the choice.
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Hierarchical
Organization of
Visual
Processing
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Visual Areas




Circuit Diagram
of Visual Cortex
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Motion Perception as Optimal Estimation
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Local Translations

OpticFlow:
(Gibson,1950)
Assigns local image

velocities v(x,y,t)

Time ~100msec
Space ~1-10deg
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Measuring Local Image Velocity

Reasons for Measurement

e Optic Flow useful:
e Heading direction and speed, structure from motion,etc.

o Efficient:
o Efficient code for visual input due to self motion (Eckert & Watson, 1993)

How to measure?
e Look at the characteristics of the signal
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X-T Slice of Translating
Camera
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X-T Slice of Translating
Camera

Local translation
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Early Visual Neurons (V1)

Ringach et al (1997)

, Time = 0 msec

X

X
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What is Motion?

As Visual Input:

e Change in the spatial
distribution of light on the
Sensors.

Minimally, dl(x,y,t)/dt # 0
As Perception:

¢ Inference about causes of
intensity change, e.qg.

0y —Vopy(X.Y,Z,t)

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2004



Motion Field: Movement of Projected
points

Figure 12-1. Displacement of a point in the environment causes a displacement
of the corresponding image point. The relationship between the velocities can be
found by differentiating the perspective projection equation.
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Basic |dea

1) Estimate point motions
2) use point motions to estimate camera/object motion
Problem: Motion of projected points not directly measurable.

-Movement of projected points creates displacements of image
patches -- Infer point motion from image patch motion

— Matching across frames

— Differential approach

— Fourierffiltering methods
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Differential approach:
Optical flow constraint equation

Brightness should stay
constant as you track

motion ](x+u6t,y+V6t,t+6t):](x,y,,t)

[t order Taylor series,
valid for small Of

[(x,y,t)+uotl . +vorl ,+otl, =1(x,,t)

Constraint equation

ul . +vl +1,=0

“BCCE” - Brightness Change Constraint Equation
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Brightness constancy constraint line

ul, + vl + 1, =0:
one equation,
two unknowns!

Constraint
lineg

W)

Figure 12-4. Local information on the brightness gradient and the rate of
change of brightness with time provides only one constraint on the components
of the optical flow vector. The flow velocity has to lie along a straight line per-
pendicular to the direction of the brightness gradient. We can only determine the
component in the direction of the brightness gradient. Nothing is known about
the flow component in the direction at right angles.




Problem: Images contain many edges--
Aperture problem

N |0 |9

Motion component in the Vy
direction of the edge

Vx

PSY ¢




\

The gradient constraint:

lu+Iv+1 =0

VieU =0)

Defines a line in the (u,v) space

Normal FIOW\
[ VI

LTV
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Local Patch Analysis
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Aperture Problem (Motion/Form Ambiguity)

a) b) c) Result: Early visual measurements are

% ambiguous w.r.t. motion.
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Aperture Problem (Motion/Form Ambiguity)

a) b)

&)
N

_I_

C)

However, both the motion and
the form of the pattern are implicitly
encoded across the population of V1
neurons.

Z;

Actual motion——»
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Plaids

Rigid motion

This pattern was
created by super-
imposing two drifting
gratings, one moving
downwards and the
other moving leftwards.

Here are the two
components displayed
side-by-side.
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Combining Local Constraints

VI'eU=-],
VI*eU=-]"
VPP eU=-T

u etc.

Find Least squares solution for multiple patches.
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Motion processing as optimal inference

« Slow & smooth: A Bayesian theory for the combination of local motion signals
in human vision, Weiss & Adelson (1998)

q—-

Figure from: Weiss & Adelson, 1998
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fattest

Lightest

1

Use the left blue buttons to change the size/shape of the moving figure; use the right blue
buttons to change the color of the background. Use the vellow buttons to control the speed.



Modeling motion estimation

-E w(r Yy + 1, +1)% 1 202
)

Local likelihood: Lv)xe

Global likelihood: L (v) — p(116) o HLF(H)

Prior: P(V) « 2, OV (Do) 2
P(V)— P(0)
Posterior: PO 1) < P(I16)P(6)

From: Weiss & Adelson, 1998
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image Image

pﬂor Ilkehhood 1 Ilkellhood 2

posterior
posterior

Figures from: Weiss & Adelson, 1998
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AN
.

image local selection
likelihoods

Figure from: Weiss & Adelson, 1998
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Figure from: Weiss & Adelson, 1998
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Figure from: Weiss & Adelson, 1998
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Lightness perception as optimal
inference
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surface reflectances

57 (2)

Simple rendering model
I(x,y) = S (A) [Z(A) - N(x, y)]
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Land & McCann’s lightness illusion
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Neural network filter explanation

Lateral inhibition

)
= >
I= Differentiate U
3 (twice) by
convolving
image with

"Mexican hat filter"

Threshold small values
>

Integrate

Perceived Lightness
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Apparent surface shape affects
lightness perception

« Knill & Kersten (1991)
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Image
Luminance

Inverse graphics

\l\
solution

dlfferent "paint same "paint"
What !TIOdQ' of Reflectance Reflectance
material

reflectances, ®
shape,
and lighting VN
fit the image data? Shape Shape

®

pomt pomt
ambient ambient
lllumination lllumination
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