Making Decisions: Modeling perceptual decisions

Outline

- Graphical models for belief example completed
- Discrete, continuous and mixed belief distributions
- Vision as an inference problem
- Modeling Perceptual beliefs: Priors and likelihoods
- Modeling Perceptual decisions: Actions, outcomes, and utility spaces for perceptual decisions

Graphical Models: Modeling complex inferences

Nodes store conditional Probability Tables

This model represents the decomposition:

P(A,B,C) = P(B|A) P(C|A) P(A)

What would the diagram for P(BIA,C) P(AIC) P(C) look like? PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Sprinkler Problem

SR	P(W=F)	P(W=T)
F F	1.0	0.0
ТБ	0.1	0.9
FΤ	0.1	0.9
тт	0.01	0.99

PSY

Sprinkler Problem cont'd

4 variables: **C** = Cloudy, **R**=rain; **S**=sprinkler; **W**=wet grass

What's the probability of rain? Need P(R|W) Given: P(C) = [0.5 0.5]; P(S|C); P(R|C); P(W|R,S)

Do the math:

- 1) <u>Get the joint:</u> P(R,W,S,C) = P(W|R,S) P(R|C) P(S|C) P(C)
- 2) <u>Marginalize:</u> $P(R,W) = \sum_{S} \sum_{C} P(R,W,S,C)$
- *3) <u>Divide:</u>*

 $P(R|W) = P(R,W)/P(W) = P(R,W)/\Sigma_R P(R,W)$

Continuous data, discrete beliefs

 $P(S = s_b|x) = p(x|S = s_b)(1/3)/p(x)$, and $P(S = s_b|x) = p(x|S = s_b)(2/3)/p(x)$

Continuous data, Multi-class Beliefs

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

The problem of perception

Vision as Statistical Inference

Rigid Rotation Or Shape Change?

Weiss & Adelson, 2000

What Moves, Square or Light Source?

Kersten et al, 1996

Modeling Perceptual Beliefs

- Observations O in the form of image measurements-
 - Cone and rod outputs
 - Luminance edges
 - Texture
 - Shading gradients
 - Etc
- World states s include
 - Intrinsic attributes of objects (reflectance, shape, material)
 - Relations between objects (position, orientation, configuration)

Belief equation for perception

$$p(s \mid O) = p(O \mid s) p(s) / p(O)$$

where

$$p(O) = \int_{-\infty}^{\infty} p(O \mid s) p(s) \, ds$$

Image data

Possible world states consistent with O

Forward models for perception: Built in knowledge of image formation

Images are produced by physical processes that can be modeled via a rendering equation: I = f(Q) + V = f(Q) + V

 $I = f(\{Q_i\}, L, V) = f(scene)$ $\{Q_i\} = object descriptions$ L = description of the scene lightingV = viewpoint and imagingparameters (e.g. focus)

Modeling rendering probabilistically:

Likelihood: p(I|scene)

e.g. for no rendering noise

$$o(I \mid scene) = \delta(I - f(scene))$$

Prior further narrows selection

Graphical Models for Perceptual Inference

All of these nodes can be subdivided into individual Variables for more compact representation of the probability distribution

There is an ideal world...

- Matching environment to assumptions
 - Prior on light source direction

Prior on light source motion

Combining Likelihood over different observations

Multiple data sources, sometimes contradictory.

What data is relevant? How to combine?

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Modeling Perceptual Decisions

 One possible strategy for human perception is to try to get the right answer. How do we model this with decision theory?

Penalize responses with an error Utility function:

Given sensory data $O = \{o_1, o_2, \dots, o_n\}$ and some world property S perception is trying to infer, compute the decision: $V(r) = \sum_{s} P(s|O)U(r,s)$ Value of response $r_{best} = \operatorname*{arg\,max}_{r} V(r)$ Response is best value

Where:

$$U(r,s) = \delta(r-s) \iff$$

 $\begin{cases} 1 & \text{if } r = s \\ 0 & \text{otherwise} \end{cases}$

Rigid Rotation Or Shape Change?

Actions:

- a = 1 Choose rigid
- a = 0 Choose not rigid

Utility

U(s,a	a=0	<i>a</i> =1
s = 1	1	0
s = 0	0	1

Rigidity judgmentLet s is a random variablerepresenting rigiditys=1 it is rigids=0 not rigid

Let O_1, O_2, \dots, O_n be descriptions of the ellipse for frames 1,2, ..., n

Need likelihood $P(O_1, O_2, ..., O_n | s)$ Need Prior P(s)

"You must choose, but Choose Wisely"

Given previous formulation, can we minimize the number of errors we make?

• Given:

responses a_i , categories S_i , current category S, data O

- To Minimize error:
 - Decide \mathbf{a}_i if $P(a_i | o) > P(a_k | o)$ for all $i \neq k$ $P(o | s_i) P(s_i) > P(o | s_k) P(s_k)$ $P(o | s_i) / P(o | s_k) > P(s_k) / P(s_i)$ $P(o | s_i) / P(o | s_k) > T$

Optimal classifications always involve hard boundaries