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Linear Algebra

* Need to know or learn
— How to compute inner products, outer products
— Multiply, transpose matrices

— Elements of linear transformations
» Rotations and scaling
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Vectors

Vectors, Points, constraint lines
Length, direction, unit circle, rotation
Addition, subtraction

Dot product

» Decomposition

(on blackboard)

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2006



Linear Algebra Primer

* Why linear algebra?

» \What if more than one value is going in and coming out
of a system?

— For example, we have many inputs coming into the retina
(photoreceptors) and many outputs (retinal ganglion cells).

— Any single input affects many different outputs, and any
given output is influenced by many different inputs.

» How do we even begin to understand such a system?

— Linear algebra provides a useful tool for characterizing the
behavior of systems where many values must be
represented simultaneously. - e.g., . the brain
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Vectors

* A vector is simply a list of numbers. A vector is usually denoted
in boldface, with an arrow over it, or underlined:

X1 W
x=x=["2| OR |*
_-xn_ -Z_

* An “n-dimensional vector” has n elements. One can think of an
n-dimensional vector as either a point in an n-dimensional

space, or as an arrow drawn from the origin to the point with
coordinates x.
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Vector addition

* The addition of two vectors is their component-wise
sum:

X1 Vi X1+ Y1
XZ+y2

Z=xX+y=|"2| 4”2

_xn_ _yn_ _xn+yn_
 Geometrically, vectors are added by placing them end

to end. The vector from the origin to the tip of the last
vector is the sum vector.
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Dot Product

* The inner-product (or) dot product of two vectors takes
the sum of products of the elements of each vector:

X'y=(x,y)=x"y

X'y =2xiyi =X1Y1 +X2y2 +- - '+xnyn

=1

» This provides a measure of the similarity of two vectors
(provided you know the length of each vector). If you
divide the inner product by the length of each vector,

you get the cosine of the angle between t

x-y =|x|||y||cos@ where
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Dot Prod. Cont'd

* An alternative geometric interpretation of the inner
product is that gives you the length one vector after it
has been projected onto the other.

— Thus, orthogonal vectors have an inner product of zero.

— The inner product is oftentimes also denoted , where the
superscript T denotes “transpose.”  x-y=(x,y)=x'y

* The transpose of a vector simply tilts it on its side so it
is written as a row of numbers (instead of a column)

XT = [x19x29' ) '9xn]
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Matrices

» A matrix M is just a 2D array of numbers. It is used to
map a vector into a new vector via the relation:

y=Mx

It takes the place of the constant, k, in a simple one-
dimensional multiplication. An m x n matrix M has

elements: ] ]
M\, M, --- M,

M- M:21 M:zz M,

_Mml Mm2 an_
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Matrix-vector multiplication

* Multiplying an m x n matrix and an n-dimensional vector
produces an m-dimensional vector, and we can write the
resulting vector elementwise as: ]

M11x1 + M12X2+‘ -+ Mlnxn

Moy xi+ Myx,+---+M,,x
y=Mx = 21X1 22x:2 2nXn

M+ M, x4+ M, X,

* Analysis/synthesis: the rows vectors of a matrix tell you what
part of the input space (vectors on the right side of the matrix)
the matrix analyzes (think about the projection interpretation of
dot products). The column vectors tell you what part of the
output space (i.e., vectors coming out the left side) the matrix
can synthesize from any input.
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Matrix properties

» Just as a linear scalar system can produce only a
limited set of remappings of scalar values, so too is a
matrix operation limited in the set of remappings it can
produce. What do these remappings look like? -
rotations (orthonormal matrices) and scalings (diagonal
matrices) and combinations thereof.

* The concatenation of two matrix operations is just
another matrix operation. The combined matrix is
obtained via matrix multiplication.

* Any matrix can be decomposed in terms of a rotation,
a scaling, and another rotation.
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Matlab Intro

» “BASIC for people who like linear algebra’
* Full programming language
— Interpreted language (command)

— Scriptable
— Define functions (compilable)

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2006



Data

Basic- Double precision arrays
A=[12345]
A=[12;34]
B = cat(3,A,A) %three dimensional array

Advanced- Cell arrays and structures
A(1).name = ‘Paul

A(2).name = ‘Harry’

A = {'Paul’;'Harry’;' Jane’};
>> A{1} => Paul
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Almost all commands Vectorized

+ A=[12345]:B=[23456]
- C=A+B
- C=A"'B
- C=A"B
- C=[AB]
—sin(C ), exp(C)

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2006



Useful commands

 Colon operator
— Make vectors: a=1:0.9:10; ind = 1:10
— (Grab parts of a vector: a(1:10) = a(ind)
- A=[12;34]
- A(;,2)
- A()=[1
3
2
4]
Vectorwise logical expressions
a=[123151]
a=-= => [100101]
size( ), whos, help, lookfor
s, cd, pwd,
Indices =find(a==1) => [146]
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Stats Commands

Summary statistics, like

— Mean(), Std(), var(), cov(), corrcoef()
Distributions:

— normpdf(),

Random number generation

— P =mod(a*x+b,c)
rand(), randn(), binornd()

Analysis tools
— regress(), etc
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Probabillity

Foreach event A c S, we assume there is a number
P(A) called the probability of event A, satisfying the
conditions:

. 0<PA)<]
i. P(S)=1
i, 1fA, Ay A

.,... are mutually exclusive

J

(A, A =@, i#]), then p(U Anjz iP(A,,)

n=| n=I

Observe that

| =P(S)=P(A U A°)=P(A) + P(A®)
So

P(A¢) =1 —-P(A)
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Law of Total Probability

If A\, A,. A,.... < S are mutually exclusive such that
AN A =0forizj,and S = OAi,
| )
then exactly one of the events A, will occur

(in other words, ZP =1)
and for any event BcS. P(B) ZP(BmA,)
i=l

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2006



Conditional Probabillity

Fortwoevents Aand Bin S (A.B < S), the conditional
probability of A given B is the probability that A
occurs given that B has already occurred. Itis
denoted P(A|B) and satisfies

P(AN B)

P(4|B)= P(5)

Note: this makes sense only when P(B)> 0.
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Independence

Two events A and Bin S (A.B < S) are independent if
P(A n B)=P(A) P(B)

Note that by the definition of conditional probability, if
events A and B are independent, then

P(A)P(B)
7(5) = P(A)

P(A| B)=

Two events that are not independent are said to be
dependent.
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Bayes' Formula

Consider two events Aand Bin S (A.B < S). Since B
and B¢ are mutually exclusive

P(A)=P(A mn B) + P(A m BY) (law of total probability)
= P(A|B)P(B) + P(A|B*)P(B*) (def. of conditional probability)

P(A) = Z P(A N B,) = Z P(AB)P(B,)

Then, for B,. B,.....B, mutually exclusive with UB S

Suppose that event r(4~B
A has occurred P(B, | A)= ( )
and we want to | P(4)
know whether B, _ P(."-'I | B, )”(B)
has occurred... Z_ | P(A B )P(B,)

P>Y JUI8H: Math Models Hum Behavior, Prot. Paul dchrater, dSpring ZUU6



Bayes Example

Does patient have cancer or not?

- A patient takes a lab test and the result
comes back positive. The test returns a
correct positive result in 98% of the cases in
which the disease is actually present, and a
correct negative result in 97% of the cases in
which the disease is not present.

Furthermore, .008 of the entire population
have this cancer.

P (cancer) = P (not cancer) =
P (+|cancer) = P (-|cancer) =
P (+|not cancer) = P (-|not cancer) =
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WHAT YOU NEED TO KNOW

Joint Probability

P(x,y)=P(ANB)
Conditioning
P(ylx)=P(x,y)/P(x)

Marginalization

P(x)= Y P(x,y)
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Random Variables

A random variable is a function that associates a (real)
number with each outcome in the sample space.

Y X | PLY)

I | 0

- [ 2 [/36

3| 2736

Example: ConsidepAtie roll of two fair dice. 4 | 3/36

roll of die #2 S | 4/36

2 3 4 5 6 o | 536

1 (L.} (1.2) (L.3) (L.4) (1.5) (1.6) 7 | 6/36

o 2 (@D 22 23 24 @29 (2.6 T

of 3 [(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) 5 o

de 4 |@1) (42) (43) (44) (4.5) (4.6) ™
#1 -

O [(5.1) (5.2) (5.3) (5.4) (5.5) (5.6) T 2736

6 [(6.1) (6.2) (6.3) (6.4) (6.5) (6.6) 2| 136

Let the random variable X equal their sum.



Matlab code for computing sum of two die

% Need to enumerate all possibilities
% diel = 1:6;
% die2 = 1:6;

% Now a basic control structure
%
for dielvalue=1:6,
for die2value = 1:6,
possibilities(dielvalue,die2value) = diel value +
die2value;
end
end

% possibilities =

%

% 2 3 4 5 6 7
% 3 4 5 6 T 8
% 4 5 6 7 8 9
% 5 6 7 8 9 10
% 6 7 8 9 10 11
% 7 8 9 10 11 12

% sort our table into a long list

possibilities = reshape(possibilities,[1,36])

%
%
%
%
%
%
%
%
%
%
%

%
%

11

possibilities =
Columns 1 through 18
2 3 4 5 6 7 3 4 5 6 7 8
4 5 6 7 8 9
Columns 19 through 36
5 6 7 8 9 10 6 7 8 9 10
7 8 9 10 11 12
now the minimum value of the sum is 2
and the max is 12

for sumvalues = 2:12,

testifequal = (possibilities == sumvalues);

% testifequal returns a new list of the same size

% possibilities with a 1 for every element in

% possibilities that is equal to the current sumvalue
% (2,3,4, etc) and zero for all other values
count(sumvalues-1) = sum(testifequal);

end

probsum = count/36
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PDF CDF

x

FIGURE 2.2
This shows the probability density function on the left with the associated cumulative

distribution function on the right. Notice that the cumulative distribution function takes on
values between () and 1.
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Probability Distribution Function

Given a random variable X, its cumulative distribution function
(CDF) is defined as

F(b) = P(X <b)
for any real number b, where -0 < b < .

Properties of the CDF include:
i.  F(b)is a non-decreasing function of s
ii. lim,_, F(b)=F(x)=1
ii. lim,_, . F(b) = F(-o0) = ()

In general, all probability questions about X can be answered In
terms of the CDF. For example, fora < b

Pla< X<b)=F(b)— F(a)
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Discrete Random Variables

A random variable is discrete if it can take on a countable number
of values. Example: X € {2. 3.4, ..., 12}

For a discrete random variable X, we define the probability mass
function as

pla) = P(X = a)
So the CDF for a discrete random variable satisfies

Fla) =P(X<sa)=2Z__ P(X=x) =2 __ p(x)

Consider the case where the possible values of X can be
enumerated by x,, x,,..., x,. Then,

p(x;) =0 fori=1,2.....n

plx) =0 for all other values of x

Z /:)(.\‘,. )= I
i=1

and



Important Discrete Random Variables

Bernoulli Random Variable with parameter (p) (where 0 < p <1)
X e {0.1} p(0)=PiX=0}=1-p
p(l)=P{X=1};=p

Binomial Random Variable with parameters (n,p) (where n=0, 0 < p <1)
\

- . (v ) n i n-1
Xe {0.1.2,....n} p(iy=PX =il=| _|p'(1-p)
\!)

Geometric Random Variable with parameter (p) (where 0 < p <1)

Xe {1.2.3...} pn)=PiX=n}=(l-py'p
Poisson Random Variable with parameter (/) (where 4 = 0)

| o LA
Xe {0,1.2....0 pli)=P X =ij=e”—
l.
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Binomial Events

n=06 0 N=0,0=0.7
0.4 ; 04 * OO
0.35 0.3F
0.3 ). 3
( 'Il 1 ) ‘.
f 3
1
0.2 [
0.15 ) 1 ‘
|
01 N 1
0.05 { ).0
|
L. Al I
f o ey f 0 g D
FIGURE 2.3
Examples of the binomial distribution tor different success probabilities
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Birthday Problem

What’s the chance two people in a room share the same
birthday?

Events?

Define probabilities?

Answer in MATLAB code:
n=0:60; p = 1-cumprod((365-n)/365)
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Birthday Problem

What’s the chance two people in a room share the same birthday?

P( B ) = 1- P( Not B) = 1-P(NOONE shares the same birthday. )

Events?

Events A, = Person i’s birthday is different from Persons {0,...,i-1}

Define probabilities?

P(A;) = P(@’s birthday is different from preceding persons)
= (365-1)/365 (i.e. How many chances out of the total)
P(Not B) = P(Ay & A, &... & A ))=P(A),A,,... , A)
= P(Ag)P(A,)... P(A) =TTy P(A))
= (365*364*....(365-1))/ 365" =365!/((365-1)! 365')
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Continuous Random Variables

A random variable is continuous if it can take on a continuum of
possible values. Example: X € [0.1]

For a continuous random variable, we define the probability density
function fix) for all real values -o < x <«

F(a)=P(X <a)= | f(x)dx

and more generally

b
Pla<X <b)= [f(x)dx
This definition implies the following:

P(X=a)= I,/ (x)dx=20 P(— X = 73_)= J.f(.\‘)d.\' =1

4 Fa)= f(a)

da



Important Continuous Random Variables

Uniform Random Variable with parameters («,[3)

J I 0 a=a

L Y < X< , a—a

J(x)=1p-a a<x<f Hakwﬂ_a a<x<fl
l 0 otherwise | azp

Exponential Random Variable with parameter (4)

J/:.L'_AI x=0

f(x)= Flay=1-¢* a=0
| 0 x<0

Normal Random Variable with parameters (u, o°)

a
Ax—u\ 1202 ) _ ] (=) 1262
e \FHyize Fla)= JT(’ R dly

o l
S(X)=—=—
o o N2no

Define Y= (X-u)/o. If X ~ N(u, 6%), then Y ~ N(0,1) is known as the
standard (unit) random variable. ®(a)=P{Y < a}
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Expected Value

The expected value of a random variable X is

E(X)= Z,\‘ plx) E(X)= j 1(x)dx

all x

(if X is discrete) (if X is continuous)

and is also known as the expectation, mean, or first moment of X.

Examples:
« Let X be Bernoulli with « Let Y be Uniform with
parameter p. parameters («, /f).
B
V
X|=1(p)+0(1- ElY|= |—dy
E[X]=1(p)+0(1- p) 7] ,,I/? —~d
pr— °1}-
2f-a),
_pra

2

pa—



Expected Value for Functions of .X

Let ¢rX) be a function of the random variable X. Then,

Elg(X)]= Z g(x) plx) I:’[g( X )] = J.g(..\‘)./'(.\')dx
allx .
(if X' Is discrete) (if X'is continuous)

Consider the following important functions:
«  When gix)=X" then EfgrX)] is known as the m" moment of .X

ox

LI Xm] — me /7(\') EI»‘Y m-I — j xm | f‘(;\‘)é I

allx e

« Let u~FE/X] be the mean of the random variable X. When g(x)=x- 1 J)?,
then £/g(X)/ is known as the variance of .X

Var(X)=E[(X— )] Var(X) = E[(X = 1,)°]
- z%(x—/ux) ,)(\‘) — j(\. —_— / lx ')2 - f(\.) alx

« Ingeneral, £/(x- 1 )"] is Known as the m'" central moment of .\.



Jointly Distributed Random Variables

For any two random variables X and Y we define the joint
cumulative probability distribution function of X'and Y as

F(ab) =P(X<a Y=<b) -wo<ab<=wx

In @ manner completely analogous to the case of a single random
variable, we define:

— Joint probability mass function: pix,y) (discrete case)
— Joint probability density function: fix,y) (continuous case)
— Expectation of jointly distributed random variables

Just as we speak of independence of events, we say that two
random variables X and Y are independent if

PIX=x, Y=y =P(X=x)P(Y=y)

By the definition of conditional probability, X and Y are independent
if and only if

PIX=x|Y=y =P(X=x)
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Normal & Multivariate Normal

l
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