5.1 INTRODUCTION

The normal course of our lives can be vicwed as a series of decisions in
which we choose among the various job offers, insurance policies, and
evening entertainments thai we encounter. Some decisions are easy and
painless; others are difficuit and troublesome. What makes decisions difficult
1s the existence of doubt, conflict, or uncertainty.

The uncertainty may stem from incomplete knowledge about the world,
as when the outcomes of the decision depend on some future state or event.
The uncertainty may also stem from lack of knowledge about oneself, as
when one is not sure which of several possible outcomes would be most
satisfying. The difficulty in deciding whether or not to carry an umbrella,
for instance, results from uncertainty about the weather. The difficulty in
deciding which color car to buy, on the other hand, results from uncertainty
as to which color would be most pleasing.

This chapter deals with two types of decision problems: decisions
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with incomplete knowledge and decisions with unsure preferences. Both
types of decision problems are accompanied by uncertainty. In the former
type, however, the uncertainty concerns the f uture state of the world, whereas
in the latter it concerns the decision maker’s own state of mind.

These two paradigms do not exhaust the wide variety of decisions
faced by individuals, nor does the discussion cover the range of prablems
that have been tackled successfully by students in the field. The purpose of
this chapter is not to describe the current state of the art but rather to intro-
duce the reader to some of the basic concepts of psychological decision
theory.

Decision theory is the study of how decisions are or ought to be made.
Thus it has two faces: descriptive and normative. Descriptive decision
theory attempts 1o describe and explain how actual choices are made. It s
concerned with the study of variables that determine choice behavior in
various contexts. As such. it is a proper branch of psychology. Normative
decision theory is concerned with optimal rather than actual choices, Its
main function is to prescribe which decision should be made. given the goals
of the decision maker and the information available to him. Its results have
4 prescriptive nature. They assert that if an individual wishes to maxinize
his expected gain, for example, then he should follow a specified course of
action. As such, normative decision theory is a purely deductive discipline.

Despite their different natures, deseriptive and normative theories are
deeply interrelated in most applications. In the first place there are a variety
of situations, such as most cconomic investments, in which people try very
hard to behave optimally. Moreover, when faced with obvious errors of
Judgment or calculation people often admit them and reverse their choices.
Hence, there is an inevitable normative component in any adequate descrip-
tive theory that reflects people’s desire to do the best they can. Second, in
most interesting decision problems, optimality is not easily defined. The
main goal of 4 company, for example, may be to maximize its profit, vet its
reputation and the morale of its employees are also important for their own
sake and arc often incommensurable with maonetary considerations. In such
instances a descriptive analvsis of the goals is a prerequisite for the applica-
tion of the normative analysis. Thus, although descriptive and normative
analyses differ markedly in goals and orientations, most of their interesting
applications contain both normative and descriptive aspects.

This chapter deals exclusively with the static analysis of individual
decision making. A comprehensive analysis of the various decision problems,
with an emphasis on their mathematical structure, can be found in Luce
and Raifia’s Games and Decisions (1957). An illuminating discussion of the
applications of normative decision theory to managerial and economic
decisions can be found in Raiffa (1968). Fishburn’s book (1964) also discusses
the applications of decision theory from a normative viewpoint. For review
of the lterature, from a psychological standpoint, the reader is referred to
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Edwards (1954¢, 1961} and to the more recent surveys by Luce and Suppes
(1965) and Becker and McClintock (1967). Some of the pertinent literature
has been collected in a volume of readings edited by Edwards and Tversky
(1967).

5.2 DECISION WITH INCOMPLETE KNOWLEDGE: THEORIES OF RISKY CHOICE

Decisions with incomplete knowledge. where one does not know for sure
which state of the world will, in fact, obtain, are typically represented in
the form of a payoil matrix. A payoff matrix is simply a rectangular array
whose rows, denoted a;....,a, ..., 4, correspond to the aliernatives that
are available to the decision maker and whose columns, denoted 5y, . . ., 5

-+ Sy corTEspond to the possible states of nature. The entries of the payoff
matrix are the outcomes, or the consequences, resulting from a sclection of
a given row and column. Thus the o;; entry of the matrix represents the
outcome obtained when the individual chooses alternative @, and nature. so
o speak, chooses state 5,

To illustrate, imagine an individual deciding whether or not to carry
an umbreila to work. Naturally, the decision would depend on the relative
discomfort of geiting wet as opposed to the inconvenience of carrying an
umbrella. Another major consideration would be the relative likelihoods of
the two relevant states of nature, rain and no rain. The choice situation can
thus be summarized by the payofl matrix displayed in Fig. 5.1.

It must be pointed out, however, that the representation of an actual
decision problem by a payoff matrix is an abstraction in several respects.
In the first place the alternative courses of action and the relevant siates of
the world cannot always be clearly delineared. This does not mean that it is
impossible to reconstruct an appropriate representation in these cases but
only that a clearly formulated representation mayv be diffcult to obtain.
Moreover, this representation is clearly not ynique. There are many ways of

Statey of nature

5p - Rain 55 — Na rain
_ oy
ay -~ Carry the ) — Stay _dr\.r gz — olay "31“-"
umbreila carrying carrying the
i the umbrella umbralla
Alternatives
4, — Do not 037 — Get wet 24, — Stay dry
garry the without carrying without carrying
umbrella the umbrella the umbrella

Fig. 5.1
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structuring or representing a decision problem in a payofl matrix form. The
art of finding the “right way™ of structuring a decision problem contributes
a great deal to ils successful solution, An appropriate representation of a
decision problem in a payoff matrix form, therefore, is the result of an
adequate formulation rather than a substitute for one. It is nevertheless a
useful analytic toal.

The representation of decisions with incomplete knowledge by payeff
matrices suggests distinguishing among three states of knowledge or forms
of information under which such decisions are made; certainty, ignorance,
and nisk.

In decision making under certainty, the decision maker knows exactly
which outcome results from each choice. After the choice is made, this known
outcome obtains with certainty regardless of nature’s choice. This occurs
when all the consequences in each row of the payoff matrix are identical,
or, equivalently, when the obtained state of the world is known for sure.
The choices between roast beef and steak for dinner, or between a trip to
Flarida or to California are examples of decision making under certainty.
Because no random or chance process s involved, such choices are also
referred to as riskless.

It is important to realize that this notion of certainty depends vitally
on the definition, or the level of analysis, of the consequences. If receiving a
particular dinner in a restaurant is regarded as a consequence, then the
choice between entrees is u riskless one, because one certainly gets the dinner
one orders. Yet, if enjoyment of the meal is viewed as the proper consequence,
the choice is no longer riskless, because there is a great deal of uncertainty
associated with the outcomes that depends on the quality of the restaurant
and the competence of the chef and that might not be completely known in
advance. Similarly, enjoyment of a trip depends on the weather in California
and in Florida, which is not at all certain. What seems to be a decision under
certainty relative to one level of analysis, therefore, may turn into a decision
under uncertainty on further analysis of the consequences. For a penetraung
analysis of this issue, see Savage (1954, pp. 82-91).

If decision making under certainty is one extreme case in which one
knows exactly which state of the world will obtain, then decision making
under ignorance' is the other extreme in which one knows exactly nothing
{or better yet, nothing exactly) about which state of the world will obtain.
A decision whether to carry an umbrella, in the absence of any information
whatsoever about the likelihoods of the weather conditions, is an example of
decision under ignorance. Decision problems of this kind are rare because in
mest situations one has some information about the likelihood of the relevant
states of nature. In fact, some of the approaches to decision under ignorance

iDecisions under ignorance are commuonly referred to as decisions under uncertainty.
Recause the latter term is also used in a broader sense, however, the former term is

preferred.
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attempt to reduce them to decisions under risk where the relevant information
about the states of the world is utilized in the analysis.

In decision making under risk, it is assumed that the individual can
evaluate the likelihoods of the various states of nature. More specifically,
nis beliefs about the likelihoods of the relevant states can be cxpressed
by some (possibly subjcetive) probability distribution. Risky choices are
essentially gambles whose outcomes are determined jointly by the choice of
the individual and the result of some specified random process, The decision
maker cannot know, therefore, which state of the world will obtain, but he
knows (approximately, at least) the probabilities of occurrences of the
various states, In some instances, such as in gambles based on unbiased
dice. the objective probabilities are known exactly. In other gambles, such
as business investments or insurance policies, only rough subjective estimates
of the probabilities are available.

The main part of this section is devoted Lo the major theory of decision
making with incomplete knowledge: the expected utifity theory. In the next
three subsections the basic model is introduced, the axiomatic structure is
discussed, and some empirical tests of the theory are described. Finally,
alternative theories that are not based on the expectation principle are
studied in the subsequent two subsections,

The study of decision making under risk dates back to the 18th century
when French noblemen asked their court mathematicians to advise them how
to gamble. Although utility theory has changed a great deal since those days,
its basic problem remains essentially unchanged. To illustrate, imagine being
offered a simple two-outcome gamble at u fixed cost ¢, where You may win
either Sx or nothing depending on a toss of a fair coin, For which values of
x would you accept the bet? If you reject the offer, no money changes haads.
I you aceept it, you receive either x—¢ (your win minus the price you paid)
if & head oceurs, or —e (the price you puid) if a tail occurs. The situation is
summanized by the payoff matrix displayed in Fig. 5.2. Given a fixed price,

States
Head Tail
. )
|
Aceept S .
Reject 0 0
|
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the problem is to formulate a decision rule that would determine the values
of x for which the gamble would (or should) be accepted.

One simple decision rule is to compute the expected value of cach
alternative and to choose the one with the higher expected value. The
expected value of an alternative or a gamble is the sum of its outcomes, each
weighted by its probability of occurrence. More formally, the expected value
of a gamble, with outcomes x,, . . ., x, obtained with probabilitiesp,, . .. . p,.
respectively, equals 3, p.x,. (For further discussion of the expected value
notion, see the appendix.)

The expected value of rejecting the offered gamble. denoted EV(R),
is clearly zero because EV(R) = (10+(3)0 = 0. The expected value of
accepting the gamble, denote EV(A), is given by the cquation EV(4) =
Hx—e)4+ H—¢) = (x/2)—e. Thus EV(4) > EV(R) whenever x/2 > c.
According to the expected value principle, therefore, one should accept the
offered bet if and only if the cost (¢) is less than one half the prize (x). The
expected value of a bet can be interpreted as the average outcome resulting
from playing it an indefinite (or very large) number of times. Thus, if the
gamble is played a very large number of times, one can practically assure
himself of an average gain of (x/2)—c¢. We speak of gambles as being
favorable, unfavorable, or fair, according to whether their expected values are
positive, negative, or zero.

If one follows the expected valee rule, therefore, one should accept
all favorable bets and reject all unfavorable bets. This is not, however, what
people actually do, nor is it what they feel they ought to do. In the first place
people gamble by accepting bets whose expected values are negative. For
otherwise gambling casinos would be out of business and they are not.
Second, people buy insurance and in so doing they are paying the insurance
company in order to get rid of an unfavorable gamble. Many people pay a
monthly fire insurance premium, for example, lo avoid the relatively small
chance of losing the value of their property as a consequence of fire. In most
cascs, however, the price paid for the insurance is higher than the expected
value of the undesirable gamble. Otherwise, insurance companies would be
out of business and they are not. Moreover, people feel that buying insurance
(and in some cases even gambling) is a rational form of behavior that can be
defended on normative grounds. Hence, the expected value model is in-
adequate on both descriptive and normative accounts. In particular, it
implies that one should be indifferent with respect to all fair bets. Hence,
one should not object to tossing a fair coin to decide whether he wins or
loses $1.000, for example. Most reasonable people would probably reject
the gamble, however, because the potential gain of $1.000 does not guite
compensate for the potential loss of $1,000.

Similar difficulties, arising from a gambling puzzle known as the
St. Petersburg paradox, led Daniel Bernoulli, as early as 1738, to formulate
the expected utility principle. The expected utility of a gamble, with out-
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Decision with Incomplete Knowledge: Theories af Risky Choice 1o

comes X....,x, obtained with probabilities p,....,p, respectively,
equals 3 7_, pe(x,), where u(x,} s the utility of the ith outcome. The expected
utility principle asserts that the gamble with the highest expected utility is to
be chosen. The decision rule proposed by Bernoulli, therefore, is also based
on the expectation principle, but it replaces the objective scale of value by a
subjective scale of utility. The introduction of a subjective scale results in a
more general and plausible model that seems to resolve the difficultics arising
from the expected value model. (More than 100 years later, the Bernoullian
notion of a subjective scale became the cornerstone of quantitative psycho-
physics founded by G. T. Fechner.)

The advantages of expected utility theory over expected value theory
are numerous. In the first place it allows individuals to have different utilities
for money and hence different preferences among gambles, This is essential
for any interesting descriptive or normative theory, as individuals’ preferences
are not (and for this matter need not be) independent of their attitude toward
risk. Second, it has been assumed that the more maoney one has, the less he
values each additional increment, or, equivalently, that the utility of any
additional dollar diminishes with an increase in capital. These considerations,
as well as the insurance phenomena, have led to the decreasing marginal
utility hypothesis according to which the utility function is concave, or
negatively accelerated. (The similarity to Weber's law is not accidental. In
fact, the logarithmic utility function proposed by Bernoulli was the one put
forth by Fechner as the form of the general psychophysical law.)

To demonstrate the explanatory power of the expected utility principle.
let us suppose, for illustrative purposes, that the utility for money has the
following form:

ulx) = {\,-"5; .if =0

—(x*) if x=0
Thus the subjective value of gain grows as the square root of the actual
value, whereas the (negative) subjective value of loss grows as the square
of the actnal wvalue. The graph of the function is portrayed in Fig. 5.3.
Although the choice of this particular utility function is arbitrary. it was
proposed as early as the 18th century as a prototype for Everyman’s utility
function, and Stevens (1939) has defended it on the basis of some experimental
evidence. If we examine the proposed utility function, it is easy to see that it
is strictly concave for any two points that are not in the [=1, 1] interval.
That is, a straight line connecting the utilities of any two points (outside that
interval) lies entirely below the curve. Stated algebraically,

pulx,)+(1—phuix;) < ulpxy +(1—p)x,]

for all x,, x, outside the [— 1, 1} interval and for any 0 < p < |,
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u(x)

M(_‘t] ='\/;

-2

4+

Fig. 53 Geometric illustration of the proposad utility function.

The left side of the above inequality, however, is the expected utility
of a gambie where one receives x; with probability p and x, with probability
1 —p. Its right side is the utility of the expected (monetary) valwe of the same
gamble. The above incquality asserts that, given a concave utilily function
and the expectation principle, one should always prefer receiving a given
sum of money over taking any gamble whose expected value equals that sum.
Thus the decreasing marginal utility hypothesis, embodied in the concawify
of the utility function, can account for the common risk-averse tendency to

reject fair bets and to buy insurance policies.
For concreteness, consider an individual who wishes to insure his

£3,000 car against theft. Suppose insurance costs 330 a year and that there

is 1 chance in 1,000 that the car would be stolen during this time. If he
insures his car, he will lose $30 a vear, irrespective of whether the car 1s
stolen, as the insurance company will reimburse him in case of theft. If he
does not insurc his car, he will lose $3,000 if his car is stolen and nothing
otherwise. This situation is summarized in the payoff matrix displayed in
Fig. 5.4. It is easy to sce that the expected value of buying insurance, denoted
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EV(B), is less than the expected value of not buying insurance, denoted
EV(NB), because EV(B) = —30 whereas EV(NB) = 001(—3,000) + .999(0)
= — 3. If monetary values, however, are replaced by utilities according to the
proposed utility function, the following computation shows that the expected
utility of buying insurance, denoted EU(B), is greater than the expected
utility of not buying insurance, denoted EU(NB). For: EU{B) = u(-30) =
—(30%) = —900, whereas EU(NE) = .001 u(—3,000)+.999 p(0) = — 001
(3,000%)+.999(0) = —9,000. Thus, although EV(NB) exceeds EV(B), EU(B)
exceeds EU(VB). The expected utility principle, in conjunction with a concave
utility function, therefore, can account for the purchase of insurance despite
its smaller expected value.

The utility function suggested can explain not only the rejection of
favorable gambles but also the acceptance of some unfavorable ones, Con-
sider, for example, a simple dice game where vou pay $.30 as a participation
fee and you have one chance out of six to win $2.75. It is not difficult to sec
that this gamble, dencted G, has a negative expected value, yet is expected
utility is positive, To verify this assertion note that

EV(G) = $(2.25)+ §(—.50) = & -39 — —& <0,

whereas :
EU(G) = 3u(225) +2u(—.50) = 15+ H—25) = & — 4 = o5& > 0. :
Hence, by an appropriate choice of a utility function, the purchase of :
insurance, as well as gambling behavior, can be rationalized. Indeed, a simi- !
lar rationalization has been proposed by Friedman and Savage (1948). :

It is important to realize that we have not shown that people insure
therr property or gamble on horses in order to maximize some utility function.

States of the world

Car stolen  Car.is not stolen

{p=.001) (p=.989)
b
Buy insurance -20 —30 :
Alternatives !
E
Do not buy I
insurance —3000 0 i

Fig. 5.4
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All we have shown is that although these phenomena are incompatible with
the expected value principle, they can be accounted for, if an appropriate
utility function is introduced.

The utility analysis is not limited to monetary outcomes and it can also
be applied to gambles whose consequences are nonmonetary such as the
enjoyment of a play. a loss in an election, or a satsfaction from an accom-
plishment. In fact, the general notion that people act to maximize their
utility has formed the basis for the economist’s concept of Economic Man,
which originated with Jeremy Bentham and James Mill. The expected utility
principle combines this general utility maximization notion with the assump-
tion that the utility of a gamble equals the expected utility of its outcomes.
I the available gambles, therefore, are to be played over and over again,
then the gamble with the highest cxpected utility would vield the highest
utlity in the iong run. In spite of the intuitive appeal of this rationale, the
application of the expected utility principle to essentially unique choice
situations requires an independent justification. Modern utility theory
provides such a justification in the form of an axiomatic foundation of the
expectled utility principle.

Modern utility theory was first developed by von Neumann and Meorgenstern
as an appendix to their famous Theory of Games and Economic Behavior
(1947). The theory consists of a set of axioms about preferences amony
gambles, The basic result of the theory is summarized by a theorem stating
thatif an individual's preferences satisfy the specified axioms then his behavior
can be described, or rationalized, as the maximizalion of his expected utility.
Because the axioms can be regarded as maxims of rational behavior, they
provide a normative justiticaton for the expected utility principle. Although
several axiomatizations of utility theory have been developed in the last two
decades, we present the original formulation of von Neumann and Morgen-
stern with a lew inessential modifications.

The axioms are formulated in terms of a preference-or-indifference
relation, denoted =, defined on a set of outcomes, denoted A. Later, this set is
enriched to include pambles, or probability mixtures, of the form (x. p, y).
where outcome & is obtained with probability p and outcome y 15 obtained with
probakality | —p, Given the primitives 2z and A4, the following axioms are
assumed to hold for all outcomes x, y. 2 in A and for all probabilities p. ¢
that are different from zero or L.

Al

{x,p, v)i1sin 4.

A2

= is a weak ordering of 4, where > denctes strict preferance and ~
denotes indifference.
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Al
[{-T'. F- _]"}' ‘i"- }rl o {I.‘ pg‘ .1':]‘

Ad
Il x ~y, then (x, p, z) ~ (3, p, 2).

AS
If x = p, then x > (x, p. y) = .

Al
If x> y > z, then there exists a probability p such that 3 ~ (x. p, z).

It is important to realize that utility theory was developed as a pre-
scriptive theory, justificd on the basis of normative considerations alone.
The close interrelationships between normative and descriptive considerations,
however, suggest that utility theory may also be used as a psychological
theory of decision making under risk. In discussing the axioms, therefore, we
examine them from both normative and descriptive viewpaints.

The first axiom is what is technically called a closure propertv. It
asserts that if x and y are available alternatives, so are all the gambles of the
form (x, p, ¥) that can be formed with x and y as outcomes. Because gambles
are defined in terms of their ouicomes and their probabilities. it is assumed
implicitly that (x, p, ¥) = (0. I p, x). The sccond axiom requires Lhe
observed preference-or-indificrence relation to be reflexive, connective. and
ransitive, That is, for all gambles x, y, z the following conditions are satisfied:

l. Reflexivity: x = x.

2. Connectivity: Either x = y or y = x or both.

3. Transitivity: x 2 yand y = zimply x = z.
A detailed discussion of these properties is given in the appendix. Reflexivity
is empirically trivial becaus¢ any gamble is obviously equivalent 1o itself.
Connectivity is also innocuous hecause any two gambles can be compared
with respect to preference. Although transitivity might be violated in certain
contexts, it 1s, nevertheless, a very compelling principle. Tt is certainly
imperative on normative grounds, and it is a plausible descriptive hypothesis.

Axiom 3 is a reducibility condition. It requires that the gamble (1, pg,
¥), in which x is obtained with probability pg and y with probability | — pg,
be equivalent, with respect to the preference order, to the compound gamble
[(x. p. ¥} 4. ), 1n which (x, p, ) 15 obtained with probability ¢ and y with
probability | —g. Compound gambles differ {rom simple ones in that their
outcomes are themselves gambles rather than pure outcomes, such as mone-
tary values that can be won or lost, Note that the final outcomes of both the
simple and the compound gambles are x and y. Furthermaore, the prob-
abilitics with which x and y are obtained are the same in both gambies,
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This follows from the fact that the probability of obtaining x in the compound
gambles is the probability of obtaining (x, p, ) in the first stage (i.e., g)
multiplied by the probability of obtaining x in the second stage (i.e., p),
which equals pg. (Assuming that the probabilities of the two stages arc inde-
pendent.) Conscquently, the probability of obtaining y in the compound
gamble is 1 —pg, and hence the two gambles eventually vield the same out-
comes with the same probabilities. Thus axiom 3 asserts, in effect, that the
preferences depend only on the final outcomes and their probabilities and
not on the process by which they are obtained. Normatively, it makes perfect
sense to suppose that the choices are invariant with respect to rearrangements
of the gambling procedure, as long as the ouicomes and their probabilities
remain unchanged. If, on the other hand, people have aversions or attrac-
tions associated with the actual gambling process, they may not be indifferent
between the compound and the corresponding simple gamble.

In general. the psychological interpretation of the axioms raises
intricate problems. If all gambles are presented to the individual in terms
of their final outcomes and their associated probabilities. then A3 is trivially
substantiated. If the gambles are displayed in terms of their immediate rather
than final outcomes, the relationship between the compound and the simple
gambles may very well escape the subject and A3 can be easily violated.
Moreover, two gambles that are formally identical may elicit different
responses from the subject because of differences in display, context, and
other situational variables. An individual may reject a bet offered to him by a
friend, for example, though he may gladly accept a formally identical bet
in a gambling casino. The interpretation of utility theory as a behavioral
model, therefore, has to be supplemented by a psychological theory that
accounts for situational variables that affect risky choices. In the abserice of
such a theory, the applicability of utility theory is limited to specific contexts
and 1is explanatory power 15 substantially reduced.

The fourth axiom is a substitutability condition. It states that if x and
¥ are equivalent, then they are subsiitutable for each other in any gamble,
in the sense that (x. p, z) ~(y. p. z) for any p and z. This axiom excludes the
possibility of interacting outcomes in the sense that the probability mixture
of x and z cun be preferred to the probability mixture of v and z. although
x and v, taken alone, are equivalent.

The fifth axiom asserts that if x is preferred to y, then it must be pre-
ferred to any probability mixture of x and y. which, in turn, must be pre-
ferred to y. It is certainly noi objectionable for monetary outcomes. An
alleged counterexample to this axiom is Russian roulette; players of this
game apparently prefer a probability mixture of iving and dying over either
one of them alone. For otherwise, one can casily either stay alive or kill
oneself, withoul ever playing the game. A more carcful analysis reveals,
however, that this situation, perverse as it may be, is not incompatible with
axiom 5. The actual outcomes involved in playing Russian roulette are (1)
staying alive after playing the game, (2) staying alive without playing the
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game, and (3) dying in the course of playing the game. In choosing to play
Russian roulette, therefore, one prefers a probability mixture of (1) and (3)
over (2), rather than a probability mixture of (1) and (2) over both (1) and (2)
as the alleged counterexample suggests. The former preference, however,
is not incompatible with AS. This argement also demonstrates the errors
that can result from an incomplete snalysis of the choice situation or from
an inappropriate identification of the outcomes. A careful analysis of the
payoff matrix is a prerequisite ta any serious application of the theory.

The last axiom embodies a continuity or a solvability property. 1t
asserts that if p is between x and z in the preference order (i.e, x =y > z)
then there exists a probability p such that the gamble (x, p, 2) is equivalent to
¥. This axiom excludes the possibility thar one alternative is “infinitely better”
than another one, in the sense that any probability mixture involving the
former is preferable to the latter. For a proposed countercxample, let x be
the prospect of receiving one dime, let y be the prospect of recciving one
nickel, and let z be the prospect of being shot at sunrise. Because x = ¥ >z,
Ab requires that there exists a probability p, such that the gamble (x, Pz
in which one receives a dime with probability p or is shot at sunrise with
probability 1—p is equivalent to receiving a nickel for sure. Some people
find this result unacceptable, Tts counterintuitive flavor, however. stems from
an inability to comprehend very small probabilities. Thus in the abstract,
people feel that there is no positive probability with which they are willing
to risk their life for an extra nickel, yet in actual practice a person would
Cross a street to buy some product for a nickel less, although by doing so
he certainly increases the probability of being killed. Hence, the initial
intuitions that tend to rveject axiom 6 seem inconsistent with everyday
bchavior.

Axiom 6 captures the relationships between probabililies and values
and the form in which they compensate for cach other, This form becomes
transparent in the following theorem of von Neumann and Morgenstern.

TarorEM 3.1

If axioms Al-A6 are savisfed, then there exists a real-valued utility
function u defined on 4, such that

l. x Zy ifand only il w(x) = wu(y)
2. ux, p, y) = pu(x)-+(1 —phuly).

Furtherinore, u 1s an interval scale, that is, if ¢ is any other function
satisfving 1 and 2, then there exists numbers b, and g = ¢ such that
v{x) = aquix)+b.

Thus the theorem guarantees that whenever the axioms hold, there
exists a vtifity function that (1) preserves the preference order and (2) satishies
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the expectation principle as the wtilit

utility of its outcomes. Moreover, this utility scale is unigquely determined
except for an origin and a unit of measurcment. The proof of this theorem is
quite difficult and therefore omitted. A simplified version of the result
be found in Luce and Raiffa (1957, pp- 23-31).

The main contribution of
decision making under risk is
Bernoullian expected utility princ
long run considerations,
Furthermore, the axioma
which are critical for bot

y of a gamble equals the expected

Can

modern utility theory to the analysis of
in providing sound justification for the
iple. This justification docs not depend on
hence it is applicable to unique choice situations.
tic structure highlights those aspects of the theory,
h normative and descriptive a pplications,

Some people, however, remained unconvinced by the axioms. Onc of
them, Allais (1953), argued that the theory of utility is too restrictive and
hence inadequaie. To substantiate the claim he constructed the following
example of two hypothetical decision situatio

05 each involving two gambles,
expressed in units of a million dollars,

Situation 1. Choose between Situation 2. Choose between

Gamble 1. 1 with prabability 1 Gamble 3. 1 with probability .11,

Gamble 2. 24 with probability .10, 0 with probability .89:
+ with probability .89, Gambie 4. 21 with probability . [0,
0 with probability .01, 0 with probability .90,

Most people prefer sgamble 1 to gamble 2, presumably because the small
probability of missing the chance of a lifetime to become rich seems very
unattractive, Al the same time most people prefer gamble 4 to gamble 3,
presumably because the large difference hetween the payofts dominates the
small difference between the chances of winning. However, this seemingly
innocent pair of preferences is incompatible with utility theory. To demon-
strate this, note that the first preference implies that

ufgamble 1) > w(zamble 2)

and hence

ul($) > 10u(2h)+ .89u(1) + .01u(0)

30
Jlu(d) > .10u(21)+ .01u(0).
Similarly, the second preference implies that

u(gamble 4) > u(gamble 3)
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and hence

10225 +.90u(0) > .1 1u(3)+.89u(0)

50
A0(23)+.01u(0) = 11(1),

which is clearly incensistent with the inequality derived from the first
preference.

How do people react to such inconsistencies between their intuitions
and the theory? Some people, who feel committed to their preferences,
would undoubtedly reject the expected utility theory. Or, to use Samuelson’s
phrase, they prefer to “satisfy their preferences and let the axioms satisfy
themselves.” Others, who feel committed to the theory, tend to reexamine
their preferences in the light of the axioms and to revise their initial choices
accordingly. An illuminating introspective discussion of Allais’s example,
from this viewpoint, has been offered by Savage (1954).

Savage admuts that, when first presented with Allais's example, he
preferred gamble | 1o gamble 2 and gamble 4 to gambie 3 and that he still
feels an intuitive attraction to these choices. Yet, he has adopted another way
of looking at the problem. One way in which the gambles can be realized
is by a lottery with 100 numbered tickets, one of which is drawn at random
to determine the outcome according to the payoff matrix presented in Fig. 5.5.

Ticker number

1 2N 12-100
[ Gamble 1 % % "3
<
1 i
| Gamble 2 0 2 3
[ Gamble 3 ! ! 0
-‘
| Camble 4 ¥ 23 o
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An examination of the payoff matrix reveals that if one of the tickets oum-
bered 12-100 is drawn, it does not matter, in either situation, which gamble
15 chosen. Hence, one should consider only the possibility that one of the
tickets numbered 1-11 will be drawn. in which case the two choice situations
are identical. Limiting our attention to tickets 1-11, the problem in both
situations is whether a 10:1 chance to win 2} million is preferred to 1 a
million with certainty. If one prefers gamble | to gamble 2, therefore, he
should also prefer gamble 3 1o gamble 4, if he wishes to be consistent. In
concluding his discussion Savage (1954) writes:

It seems to me that in reversing my prelerence between gamble 3 and 4
I have correeted an crror. There is, of course, an important sense in which
preferences, being entirely subjective, cannot be in error; but in a different,
more subtle sense they can be. Let me illustrate by a simple example con-
taining no reference to uncertainty. A man buying a car for $2,134.56 is
templed te order it with a radio installed. which will bring the total price to
§2,228.41, feeling that the difference is trifling, But, when he reflects that,
if he already had the car, he certainly would not spend $93.85 for a radio
for it, he realizes that he has made an error (p. 103).

The preceding analysis exemplifies how utility theory can be applied to situa-
tions where it seems incompatible with one's intuitions. Here, the theory is
viewed as a guideline or a corrective tool for a rational man rather than s an
accurate model of his nonreflective choices.

Indeed, MacCrimmon (1967) has presented problems of the kind devised
by Allais to upper-middle-leve] executives in order to study both the descrip-
tive validity and the normative appeal of utility theory. He concluded that
his subjects tended to regard most of the deviations from the theory as
mistakes and were ready to correct them, if given the opportunity.

Another criticism of expected utility theory revolves around the concept
of probability, The theory is formulated in terms of gambles whose numerical
probabilities are assumed to be known in advance. Such knowledge, however,
is missing in most applications. Can the theory be generalized to situations
where no a priori knowledge of (numerical) probabilities is available? The
answer is positive, provided some consistency requirements are fulfilled.

Savage (1954) has developed an axiomatic theory leading to simul-
taneous measurement of utility and subjective probability. We do not wish
to present this theory here but we do wish to show how the relation “more
prooable than™ between events can be defined in terms of preferences between
gambles. Consider the choice situation, displayed in Fig. 5.6, between two
gambles &y and G, whose outcomes x, y. and z depend on whether E, F, or
neither event (denoted F U F) occurs. If neither E nor F occurs, there is no
reason to prefer one gamble to another. Thus, assuming x is preferred to y,
the only apparent rcason for preferring G, to G, is the fact that E seems more
probabie than F. Stated formally, E is said to be more probable than F if
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Events
E F Fur
Ly ¥ z
¥ X I

and only if G, is preferred to G, Clearly, some assumptions are needed to
guaran*ee that the above relation is well defined. Indeed. Savage has further
shown that his axioms are suificient to establish the existence of a uniguely

additive subjective probability function s and an interval scale utility function
u such that

I. x z y if and only if w(x) = u(y) and
2. u(x, E, y) = s(Ep(x)+[1 — s(ENuly),

where (x, E, y) denotes the gamble where x is obtained if £ occurs and ¥
otherwise. Because the probabilities, as well as the outcomes, are viewed as
subjective, Savage's theory is called the subjective expected utility model,
or the SEU model, for short.

The historical development of expectation models reveals a elear trend
toward more general and more subjective decision models, In the expected
value model, both probability and value are defined objectively. In the
expected utility theory, objective values are replaced by utilities, and in the
subjective expected utility model, objective probabilities, in addition, are
replaced by subjective ones,

The introduction of subjective quantities generalizes the theory in
twao major respects. They reflect individual differences in the evaluation of
outcomes (utilitics) and cvents (subjective probability). At the same time they
do not have to be specified in advance, because they can be derived from
choices, The common property shared by all objective and subjective expec-
tation models is that the subjective value of a gamble is a composite function
ol two basic independent factors: the desirability of its outcomes and the
likelihood of its events.

In recent years there have been scveral atlempts to test the descriptive validity
of the subjective expected utility theory. Although the theory may be appii-
cable to many real world problems(such as the selection of a military strategy,
a financial investment, or a job offer), it is very difficult to test the theory in
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these contexts mostly because of the large number of unknown parameters
(utilities and subjective probabilities) and (he lack of the appropriate controls.
Consequently, students of choice behavior have devised simple experimental
parudigms, based on choice beiween gambles, that enable them to test
utility theory under controlied experimental conditions, The price paid for
these controls is that the scope of the in vestigation is necessarily limited to
those situalions that can be studied in the laboratory. The extrapolation from
laboratery cxperiments to real world behavior ic always a risky venture.
With this problem in mind we turn now to the discussion of some of the
mcthods used to test the theory and to derive utility and subjective prob-
ability scalcs, More specifically, three such methods are discussed. Reviews
of the experimental literature and discussions of the related methodelogical
issues ean be found in some of the articles cited in the introduction.

The first experimental study of expected utility theory was conducted
at Harvard by Mosteller and Nogee (1951). Their subjects were presented
with gambles, constructed from possible hands of poker dice, that they
could accept or reject. If a subject rejected the gamble, no morney changed
hands: i’ he accepted it, he won ¥ cents if he beat the hand and lost a nickel
if he did not. The situation is described in the payofl matrix of Fig. 5.7,
where the values are expressed in pennies.

The subjeets were shown how to calculate the probabilities of the
relevant events and were also given a fable with the true odds for all the poker
dice hands used in the study. By varying the payoffs, the experimenter finds
the value of x for which the subject is indifferent between the two alternatives,
After that value is found, its utility may be computed in the lollowing
fasiion. Because the subject is assumed to be indifferent between the two

alternatives, u(Accept) = u(Reject) and hence, according to expected ufility
theory,

w0} = pulx)+(1—pu(-5),
where p denotes the (known) probability of beating the hand. Because

States

Win the Lose the

hand hanci
|
Accept x -5
Reipct 0 o
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Fig. 5.8 Proportion of tumes an offered gumble was accepted by one of
the subjects in the Mosteller and MNogee experiment.

utility is measured on an interval scale, we can set u(0) = Dand w(-5) = —1
o obtain u(x} = (1-p)/p.

By varying odds and payolTs, the utilily function can be constructed,
provided the indiffcrcnce point can be found. To determine this point,
Mosteller and Nogee varied the payoff (i.c.. x) systematically and replicated
the choices many times ever a 4-month period. The proportion of times the
subject elected 1o play each of the gambles was plotted against the corre-
sponding payoff. The point at which the subject accepted the gamble 50 per-
cent of the times was estimated from the graph and taken as the indifference
poinl. An example of such a graph is given in Fig. 5.8, The reader may
recall that essentially the same procedure is employed in psychophysics to
determine sensation wnits, or jnd’s. Although the proportion of acceptance
increased with the payoff, subjects revealed a considerable degree of in-
consistency. That is, many gambles were accepted on some replications but
rejected on others. This inconsistency 1s particularly apparent when the
graph of Fig. 5.8 is contrasted with the step function (i.e., a function that
jumps from 0 to 100 per cent at one point) predicted from any model that
does not allow inconsistency.

Fourteen subjects completed the experiment, of whom 9 were Harvard
undergraduates and 5 were members of the Massachusetts National Guard,
The utility scales derived from Lhe study, in the range between 5 cents and
$5.30, were concave (negatively acceleraled) for the students and convex
(positively accelerated) for the cuardsmen. These utility functions wers then
used to predict, with moderate success, additional choices made by the same
subjects involving more complicated gambles.
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Although the Mosteller-Nogee study did not provide a very direct test
of utility theory, it lent some indirect support to the expected utility principle,
and it demonstrated that it is feasible to measure utility experimentally and
to predict future behavior on the basis of these measurements.

One criticism of the cxperiment of Mosteller and Nogee is that their
results are also interpretable in terms of subjective probabilities instead of
(or in addition to) utilities. The fact that the objective probabilities were
known to the subjects does not imply that the subjects actually used these
values in their decisions. Davidson, Suppes, and Siegel (1957) conducted a
series of studies at Stanford University designed to meet this objection and
to measure both uiility and subjective probability. Their approach followed
an earlier development of Ramsey (1931), which was based on the idea of
finding an event whose subjective probability equals one half. Assuming the
subjective expected utility model, this event can be used to canstruct a utihity
scale, which can then be used to measure the subjective probabilities of other
gvents,

If an event £ with subjective probability of one half exists, then its
complement E also has a subjective probability of one half because, according
to the theory, the (subjective) probabilities of complementary events must
sum to untty. Consequently, if one regards E and E as equiprobable. he
should be indifferent between the gamble G 1+ where he receives x il £ accurs
and y otherwise, and the gamble G, where he receives ¥ if E oecurs and x
otherwise. Conversely, if onc is indifferent between G, and Gy, for all x and y,
then his subjective probability fur E is equal to that of E, which must equal
one hali.

Davidson, Suppes, and Siegel tricd several events, but they were forced
to reject coin fiips and penny matching because their subjects showed
systematic preferences for heads over tails, for example. They finally used a
six-sided die, with the nonsense syllable ZEJ printed on three of its sides and
£0) on the other three. This die came reasonably close to satisfying the
subjective cquiprobability criterion.

Alter the desired event F is identified, various gambles can be con-
structed by varving the payoils. as indicated in Fig. 3.9
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ulx)

Fig. 5.10 Bounds {or the utility curve of subject 9 in the Davidson,
Suppes, and Siege! experiment.

If the subject prefers (G, to G,, for example, then, according Lo the
subjective expected utility model, there exist utility (1) and subjective prob-
ability (s} functions such that

s{EW() +s(Euy) = s{Fulz)+ s(E el w).

But because £ was selected so that s(E) = s{(E), the subjective probabilities
can be cancelled, and we obtain the inequality

ulxy+u(y) = wlz)+ulw).

By an appropriate selection of payolls, one can oblain upper and lower
bounds on the utility function from the inequalities derived from the choices,
provided they are consistent with the model.

Out of the 19 subjects who took part in the study, 15 satisfied the
theory and the bounds on their utility scales were determined. Because the
bounds were, in general, sufficiently close, they permiited an approximate
determination of the shapes of the utility functions, which were nonlinear
in most cases. An example of the bounds obtained for one of the subjects
is shown in Fig, 5.10.

Suppose & new event £ is now introduced into the payoff matrix shown
in Fig. 5.11. If the payofis can be selected so that subjects are indifierent
between G, and G,, then according to our theory

s{Fyu(x)y+s(F ) = s(Fu(z)+ s(F u(w).
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States
F F
[ x ¥
L'r'2 2 W

Because s(47)+s(F) = 1, we can solve for the subjective probability of £,
which is given by

Py = ) — e y)_
w(x)—w(z) + u(w) —uly)’

Having found the utilities. therefore, by using the special event £, we can
now solve for the subjective probabilities of other svents as well. Although
Davidson, Suppes, and Sicgel did not construct subjective probability scales,
they applied their procedure 1o measure the subjective probability of a single
event whose objective probability equaled one fourth. The majority of the
subjects for whom subjective probability could be caleulated tended io
underestimate the objective probability.

A more recent attempt to test utility theory and to measure utility
and subjective probability simultancously was conducted by Tversky (1967).
Consider a set of gambles of the form (x, p) in which onc wins (or loses)
$x If p oceurs and receives nothing it p does not occur. Let M{x, p) be the
bid, or the minimal selling price of the gamble (x, p). That is, M {x, p) is the
smallest amount of money for which one would sell his right io play the
gambie, According to utility theory, therefore,

ulM(x, p)] = u(x}s(p)+u(0)s(5),

where » and s are the utility and the subjective probability funclions and
# is ihe complement of p. Since utility is measured on an interval scale on
which the zero point is arbitrary, we can set #(0) = 0, and after taking
lugarithmos, we obtain,

log u[M (x, p)] = log u{x)+1og s(p).

If both x and p are varied, then the resulting bidding matrix should be
additive in the conjoint measurement sense (see Sec. 2.5). That is, the bids can
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be rescaled monotenically such that the rescaled bid for the gamble (x, p)
equals the sum of the scale values of x and p. The additivity of the bidding
matrix provides a method for testing the assumption of independence
between utility and subjective probability that lies at the heart of utility
thaory,

To facilitate the measurement process, an additional assumption about
the utility function was explored. Suppose utility is a power function of

the form u(x) = x* for some # > 0. Substituting this form in the last equation
yields

log [M(x, p)’] = log x®+log s(p):
thus

log M(x, p} = log I+é log = p).

Hence, if utility is a power function, then the logarithms of the bids should
equal the sum of the functions of the gamble's components. Conversely,
it is possible to show that if the utility function is monotonic and if the
above equation holds for all x and p, then utility must be a power function.

This prediction was tested in an experiment using 11 male inmates
in a state prison in Michigan. They were presented with pambles of the
form (x, p), where the ouicomes varied from a gain of §1.35 to a loss of
that amount, and the events varied in objective probability from .| to 9.
Each subject stated his bid, or his minimum selling price, for every gamble.
Fach gamble was presented once in each of three sessions. Several gambles,
chosen randomly, were plaved at the end of each session.

Analyses of variance applied to the logarithms of the subjects’ bids
supported additivity in 41 out of the 44 bidding matrices. The data, there-
fore, can be accounted for by power utility functions, to the accuracy allowed
by their own variability,

The derivation of the utility and the subjective probability scales was
based on the observation that for any pair of complementary events p and

M(x,p) = x*s(p) and M(x, p)’ = x’[1-s(p)].
Taking logarithms and solving for # vields

B log s(p) __ log [l —s(p)]
~log M(x,p)—logx log M(x,p)-logx’

Because the denominators can be calevlated from the data, estimates of both
8 and s(p) can be obtained. The resulling utility and subjective probability
functions for a typical subject are shown in Figs. 5.12 and 5.13.
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Objective probability

The utility functions tended to be linear for gains and convex for losses.
Apparently, the subjects were ready to sell the positive outcome gambles for
their expected (monetary) value, but they were willing to pay more than the
expected value to get rid of the negative outcome gambles. Such a preference
would lead to the purchase of insurance despite an inferior expected monetary
value,

Subjective probability scales were linear functions of objective prob-
ability for some subjects; most of the subjects, however, overestimated low
probabilities and underestimated high ones. This result has also been found
in many other studies.

The resulis obtained in this study have both methodological and sub-
stantive implications. From a methodological viewpoint it was shown that
the application of additivity analysis to a specified class of gambling experi-
ments yields a simple simultaneous construction of utility and subjective
probability scales. From a substantive viewpoint the data support the
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multiplicative relation between utility and subjective probability embodied
in the subjective expected utility principle, Moreover, the results indicate
that (within the range of payoffs investigated) the utility of money can be
described as a power function of money with different exponents for posi-
tive and negative outcomes.

All in all, the three studies reported in this subsection show that the
subjective expected utility model provides an adequate account of maost of
the data obtained in simple gambling experiments. Such findings are of
primary interest to the experimental psychologist who is concerned with the
question of how people combine various subjective dimensions (e.g., utility
and subjective probability) in order 1o evaluate, or choose among, alternatives.
An economist interested in consumer behavior and insurance purchase or a
political scientist interested in presidential decisions, for instance, might feel
that although utility theery may be applicable to their ficld of study the
experiments thus far performed are too simple and contrived to provide
relevant information. It is our hope, nevertheless, that the mathematical and
the experimental methods developed in these studies can be extended to the
investigation of complax decisions in real world environments.

The subjective expected utility model is not the only theory put forth to
account for decisions under risk. More than half a centu Yy 20, an economist,
Irving Fisher (1906), proposed that people base their choices among gambles
on the variances of the gambles as well as on the expectations.

The variance of a gamble (4, denoted ¥(G), is given by the formula
V(G) ="E(G*)— E(G), where G? is the gamble obtained from G by squaring
its outcomes. In particular, if G has two outcomes x and v obtained with
probabilities.p and 1 — p, respectively, then its variance equals p(1 — p)(x— )2,
The variance is,the most common measure of the dispersion of the outcomes,
and 1t seems conceivable that different attitudes toward risk be reflected by
preferences for different amounts of variance, Although some types of
variance preferencesscan be accommedated by an appropriate selection of
utility functions, Allai$.(1953) has further argued that, even with the intro-
duction of such utility functions, the expectation principle alone is insufficient
to explain risky choices. Allais suggested the investigation of decision models
that depend not only on expectation but on other attributes such as variance
and skewness as well, :

Alternatives to utility theory can be developed by first characterizing
each gamble in terms of its objectively defined attributcs and then formulating
decision rules based on these alirjbu}.'é@ Thus, instead of choosing ameng
gambles according to their subjective “%p::ted utilities, ome can choose
among them according to some linear combBaation of their expectations and

variances, for example. The major difficulty \v\ith this approach lies in the
need to specify in advance the relevant attrihirts:g\,\ or dimensions, whose
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