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Completing everyday tasks often requires the execution of action sequences matched to a particular problem. To study the neural

processes underlying these behaviors, we trained monkeys to produce a series of eye movements according to a sequence that

changed unpredictably from one block of trials to the next. We then applied a decoding algorithm to estimate which sequence was

being represented by the ensemble activity in prefrontal cortex. We found that the sequence predicted by this analysis changed

gradually from the sequence that had been correct in the previous block to the sequence that was correct in the current block,

closely following the fraction of executed movements that were consistent with the corresponding sequence. Thus, the neural

activity dynamically tracked the monkeys’ uncertainty about the correct sequence of actions. These results are consistent with

prefrontal involvement in representing subjective knowledge of the correct action sequence.

Many important goal-directed behaviors, such as making coffee or
commuting to work, are composed of sequences of actions. Often the
appropriate sequence of actions to complete a particular task has to be
figured out by trial and error. When the brain is trying to find the
appropriate sequence of actions, it has to monitor and integrate
information about recent actions and their outcomes. Where in the
brain is this information represented? Evidence from lesion and single-
cell recording studies suggests that multiple regions in the primate
frontal cortex contribute to the proper coordination of sequential
actions1,2. For example, patients with frontal lobe damage have deficits
on the Tower of London task, in which a configuration of beads stacked
on three different rods must be reproduced with an efficient sequence
of movements3. Similarly, many neurons in the frontal cortex of
monkeys change their activity according to the temporal order of
multiple movements in a sequence4–12.

When monkeys have to learn arbitrary stimulus-response associa-
tions by integrating the outcomes of previous actions, individual
neurons in the frontal cortex and the basal ganglia show changes in
their activity that mirror the behavioral manifestations of these
associations13–18. Similarly, when monkeys learn an association
between two arbitrary visual stimuli, neural activity in the inferior
temporal cortex incorporates this new information with a time course
similar to that of the corresponding behavioral change19. These studies
have provided important insights into how newly acquired information
about stimulus-response and stimulus-stimulus associations are inte-
grated and stored in the brain.

In the present study, we investigated how neural activity in prefrontal
cortex evolves as the monkey gradually acquires knowledge of the
correct movement sequence. Unlike an association between two
arbitrary stimuli or between a stimulus and a response, information

about the correct movement sequence must be extracted across time
and multiple movements. To examine how this dynamic process is
reflected in the population activity of prefrontal cortex, we trained
monkeys on a sequential eye-movement task. During this task, the
correct sequence changed unpredictably, forcing the monkey to dis-
cover the new sequence by trial and error. The corresponding changes
in neural activity were analyzed using Bayesian decoding analyses. We
found that the neural activity predicted the correct sequence with a
higher probability—that is, the posterior probability of the correct
sequence increased—as the monkey discovered which sequence was
correct. This implies that, as the monkey discovered the correct
sequence, the activity of the prefrontal cortical ensembles became
more similar to the responses produced when the monkey knew
which sequence was correct. Furthermore, the time course of this
change in neural activity closely tracked the fraction of the monkey’s
decisions that were correct for the corresponding sequence, indicating
that neural activity in prefrontal cortex represented the monkey’s
subjective or probabilistic knowledge of the correct sequence. In
addition, there was a greater increase in posterior probability after
the monkey produced a correct movement than after it produced an
error, suggesting that the monkey learned more from its successes than
from its mistakes.

RESULTS

Two rhesus monkeys were trained on a sequential decision-making task
(Fig. 1; see Methods). In each trial, they had to execute one of eight
possible movement sequences; thus a single trial consisted of a sequence
of several movements. (The distinction between individual movements
and trials is important; in the results that follow, we always indicate
explicitly whether we are referring to a single movement or to an entire
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trial.) Each movement in a trial corresponded to a saccade to one of two
choice targets. If the monkeys selected the correct target, they advanced
in the sequence. If they selected the incorrect target, they had to return
to their previous target and were again presented with the same two
choice targets. This was repeated until they selected the correct target.
When the monkeys had chosen all three correct targets and completed
the sequence, they received a juice reward. However, a trial was only
counted as correct if the monkeys completed the sequence without
making any incorrect movements. The correct decision at each stage of
the sequence was not cued explicitly; however, it remained fixed until
ten trials had been executed correctly. After ten correct trials (one
block), a new sequence was selected pseudo-randomly. No sensory cues
were provided to indicate when the sequence changed at the start of a
new block. Thus, the monkeys had to discover the new sequence of
correct decisions by trial and error.

Sequence coding in individual prefrontal neurons

We recorded from 485 neurons around the caudal principal sulcus of
macaque prefrontal cortex (308 from monkey 1, 177 from monkey 2).
These neurons were recorded in small ensembles of 1–15 neurons, with
an average ensemble size of 8. The activity of neurons examined in this
study often reflected not only the kinematics of the movements, but
also their sequential aspects (Fig. 2). For example, one neuron
responded strongly to the second movement in all eight sequences,
but more strongly to these movements when they were part of
sequences 2 and 6 than when they were part of the other sequences
(Fig. 2a). Another neuron responded selectively to the first and last
movements of sequences 2, 3, 5 and 8 (Fig. 2b). These patterns of
activity are different from what would be expected of neurons with
simple directional tuning. To quantify this nonmotoric, sequence-
related activity across the population, we carried out a two-way analysis
of variance (ANOVA) with movement and sequence as the two factors.
In this analysis, the movement was coded as one of the ten possible eye
movements with different directions and positions (see Fig. 1). We
found that the main effect of sequence was significant for 288 out
of 485 (59%) neurons (P o 0.01, type III sum of squares), and the
movement effect was significant (Po 0.01) for 330 neurons (68%). Of

the 373 neurons in which either sequence or movement was significant
(P o 0.01), 77% showed a significant effect of sequence. This shows
that the response of a majority of our neurons was affected not only by
the movement being executed but also by the sequence. These single-
cell results on the representation of sequential movements mostly
replicate findings from previous studies4,9.

Ensemble decoding analyses

Next we addressed the question of how the sequence represented in the
neural activity of the ensemble changes while the monkey discovers the
correct sequence for the current block. To do this, however, we first had
to show that the neural activity represents the sequence information
when the monkey has discovered the sequence for a particular block
and is executing trials correctly. Although the ANOVA results showed
that information about sequences and movements was encoded in the
activity of individual neurons, they did not reveal how reliably this
information was represented in the population of neurons. To examine
this quantitatively, we carried out a decoding analysis using a linear
decoding algorithm; we treated each movement of every sequence as a
unique element and used the activity during the movement, in the
simultaneously recorded neural ensembles, to predict which of the 24
possible movements (8 sequences � 3 movements per sequence) was
being executed. Only movements from correct trials were included in
this analysis; thus, these movements come from trials in which the
monkeys presumably knew the correct sequence. Also, neurons were
included in this analysis only if their activity was significantly different
across these 24 movements (one-way ANOVA, P o 0.05). This
prescreening resulted in 51 ensembles (Fig. 3a), where each ensemble
corresponded to a set of cells that we simultaneously recorded from in a
single session.

The predictive performance of the ensembles improved in an
approximately linear fashion as the size of the ensemble increased
(Fig. 3b); further, it was above chance (1/24 ¼ 4.2%) in essentially
all cases, as expected given that individual neurons were already
prescreened. The linear increase in decoding performance with ensem-
ble size has been seen in other coding studies20,21. Of course, the
increase would eventually become sublinear with more neurons, as
performance cannot exceed 100%. This initial decoding analysis,
combined with the ANOVA results, demonstrated that when the
monkey knew the correct sequence, the neural activity could be used
to predict both the correct sequence and which movement in that
sequence was being executed.

To examine the possibility that nearby neurons might code for
similar movements and sequences, we computed the correlation
coefficient between the signal correlation22 and the distance between
neurons, across all pairs of simultaneously recorded neurons. The
signal correlation is the correlation coefficient between the mean
responses of the neurons to each movement of the different sequences;
it measures the similarity in the responses of the neurons to the
sequential movements. The correlation between the signal correlation
and the distance between neurons was small and not significant (r ¼
–0.058, P 4 0.05). Thus, there was no detectable anatomical organi-
zation of neurons with respect to the factors relevant to this task.

Sequence discovery and representation of uncertainty

The above single-cell and ensemble decoding analyses showed that
individual neurons often responded differently to the same movement
in different sequences. Thus, knowledge of the correct sequence affected
neural activity. This raises the question of how the neurons responded
when the monkey was trying to figure out which sequence was correct
in a new block. During this exploration period, the monkeys executed

Eight possible sequences
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Figure 1 Behavioral task. (a) The eight possible sequences the monkeys

were trained to execute. Each panel indicates one sequence. (b) Temporal

sequence of choices in a single trial. The dot in the center of the ‘Initial

fixation’ frame indicates the central fixation point. The two dots left and right

of the central dot in the ‘Movement 1’ frame indicate the first two choice
targets. Similarly, the two dots above and below fixation in the ‘Movement 2’

frame and left and right of fixation in the ‘Movement 3’ frame indicate the

possible targets for the saccade at the corresponding points in the sequence.
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movements without always knowing whether they were correct or, most
importantly, to which sequence they belonged.

We found that while the monkeys discovered the correct sequence
for a particular block of trials, the patterns of neural activity in the
recorded ensembles gradually evolved to become more similar to the
patterns observed when the monkeys were executing trials correctly. To

illustrate a typical series of neural responses during sequence discovery,
we show rasters for the data from two simultaneously recorded neurons
during two consecutive blocks of trials (Fig. 4a). It should be noted that
error trials always included correct individual movements, as the
monkey was given multiple opportunities to execute the correct
movement. We were particularly interested in comparing the responses
to the same movements before and after the animal learned the correct
sequence. Therefore, for error trials, we show only the responses for the
correct movements. In this example (Fig. 4a), the monkey made
mistakes in the first two trials after the sequence switched from 2 to
4 (labeled Trial 1 and Trial 2) and then executed the next trial (labeled
Trial 3) without errors. As the monkey discovered the correct sequence,
the response of the illustrated pair of neurons for each movement
became more similar to the average response expected for the same
movement from the correct trials (Fig. 4b). This can be seen by
comparing the average activity for the first movement of the sequence
from correct trials (m1) and the activity during the first movement in
the first three trials (1, 4 and 7; Fig. 4b). Similarly, activity during the
second movement (2, 5 and 8) gradually became more similar to the
mean for the second movement in the sequence (m2, Fig. 4b). These
results can be summarized by plotting the euclidean distance between
the neural response for each movement and the corresponding mean
response, from correct trials, for that movement (Fig. 4c). The graph

a 1

30 sp/s
30 sp/s

2 3 4

5 6 7 8

250 ms

1 2 3 4

5 6 7 8

b

Figure 2 Raster plots and spike density functions for two example neurons. (a,b) In both neurons, a two-way ANOVA showed a significant effect of movement

and a significant effect of sequence (P o 0.01, type III sum of squares). Each group of three rasters corresponds to a single sequence; each individual raster

shows one of the three movements in the sequence. The direction of movement is indicated below the raster by a bar in the 3 � 3 grid; each dot in this grid

corresponds to a potential target. Thus, the first movement of the sequence numbered ‘1’ is from the central target to the right target, the second movement is

to the top center target, and so on. The dotted vertical line in the rasters indicates target onset.
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Figure 3 Ensemble size and classification performance. (a) Distribution of

ensemble size. (b) The classification performance is plotted as a function

of the number of neurons in an ensemble for which the effect of movement

was significant in a one-way ANOVA (P o 0.01). The regression line (solid)

fit to the data had an intercept of 4.3 and a slope of (mean ± s.e.m.)

2.4 ± 0.0654% per neuron.
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shows that this distance decreased across trials for each movement of
the sequence.

Although the results from the analysis based on the euclidean
distance can be easily visualized, this analysis has two important
drawbacks. First, it does not take into account the variability in
neuronal activity. Neurons that are more variable should have their
distances weighted less. Second, the euclidean distance is not normal-
ized, so ensembles with more neurons will have larger euclidean
distances, making averages across ensembles uninterpretable. Both of
these drawbacks can be addressed by using a linear decoding model and
Bayes’ theorem to calculate a posterior probability for each individual
movement. The posterior probability is the probability that the
monkey executed a particular movement given the observed neural
response in an ensemble. We can also think of this as the ability to
predict which movement the monkey was executing by observing the
neural activity. If the posterior probability is higher, we have more
confidence in our ability to predict the movement that was being
executed. The posterior probability tended to be inversely related to the
euclidean distance (Fig. 4c): as the neural response got closer to the
mean response and as the euclidean distance decreased, the probability
that the response was generated by a distribution with the correspond-
ing mean increased. Because the posterior probability is a proper
probability, it is constrained to lie between 0 and 1, which allowed us
to average our results across ensembles. When assessing the classifica-
tion performance of the ensembles (Fig. 3), we assigned the neural
response in each trial to one of the movements in the sequence—the
one that had the largest posterior probability given the neural activity.
For the analyses on dynamic changes in neural activity associated with
sequence discovery (Fig. 5), we calculated the posterior probability
given the neural activity and computed its average across ensembles
and trials. The posterior probability provides a continuous measure of
the neural responses, whereas classification is categorical. Therefore, the
posterior probability was better suited to measuring continuous,
gradual changes in ensemble activity.

Because our goal was to compare the time course of the changes in
neural activity and behavior, we first describe the time course of
behavioral changes. After the correct sequence changed, the number
of incorrect trials before the first correct trial, averaged across the two
monkeys, was 2.66 (Fig. 5a). Once a correct trial was executed,
indicating that the monkey had discovered the correct sequence for
the block, there were about 0.5 error trials per correct trial. This shows
that the monkeys were relatively proficient at the task. Monkeys also
rarely perseverated. When they executed an incorrect movement, they
almost always made a saccade to the other choice target on the next
movement. Overall, the rate of perseveration was 6.9% across all trials.
When we restricted the analysis to the first trial of a new block, the
frequencies of perseveration on the first, second and third movements
of the block were 3.9%, 8.7% and 6.3%, respectively.

The neural responses evolved in parallel with the monkeys’ behavior.
The average posterior probability of the monkeys’ movements, pre-
dicted by the neural activity in the ensembles, increased after the
monkeys had executed the first correct trial in a new block (Fig. 5a),
and the difference between the posterior probability before and after a
correct trial was significant across the population (individual t-tests, all
P o 0.01). To understand this more clearly, we can return to the
example discussed above (Fig. 4a), and remember that the neural
activity related to a particular movement reflects the sequence to which
the movement belongs. When the block switched from sequence 2 to
sequence 4 (Fig. 4a) and the monkey was required to make the second
movement downward, it was initially doing so without knowing which
sequence it was supposed to execute because it had not yet worked out
the correct sequence. It would make this downward movement,
however, because if it tried the upward movement it would be forced
back to the previous target and given the choices again until it selected
the lower target. Because the neural responses reflect not just the
movement being made, but also the sequence, the neural activity
should reflect the monkey’s lack of knowledge of the correct sequence,
which it does (Fig. 5a). When the monkeys had not yet resolved which
sequence was correct for the current block, as indicated by a large
number of incorrect movements, the posterior probability was also
relatively low, suggesting that the neural activity reflected the monkey’s
lack of knowledge of the correct sequence.

The monkeys also tried movements that would have been correct for
the sequence in the previous block; this allowed us to investigate, at a
finer grain, the correspondence between the posterior probability of the
movement predicted by the neural response and the percentage of
correct decisions made by the monkey. To do so, we ‘unpacked’ the
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Figure 4 Temporal evolution of activity in a pair of neurons during sequence

discovery. (a–c) Rasters in a show the neural activity for two consecutive

blocks of trials. In the first block, ‘Sequence 2’ was correct; in the second

block, ‘Sequence 4’ was correct. The activity shown for the error trials are for

the correct movements. Accordingly, the column of responses labeled ‘Move

2’ for Sequence 2 is always a movement from left to the top center; however,

this might not be the second movement of the trial if the monkey made

mistakes before this movement. Numbers highlighted in gray correspond to
the movements plotted in b and c. In b, the small dots indicate firing rates of

the two neurons in the first correct trial and the two previous error trials as

highlighted in a. The larger colored dots labeled ‘m’ are the mean activity

averaged across correct trials in all blocks for the corresponding movements

in Sequence 4. The number labels on the small dots correspond to the

numbers in the raster in a and the color of the number indicates the ordinal

position in the sequence. The asterisks indicate movements from the first

correct trial. The euclidean distance between the activity in single trials and

the mean activity for the corresponding movement is shown in c. The

movement number corresponds to those in the rasters and the rate plot;

asterisks again indicate movements from the first correct trial.
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movements that were averaged for the posterior probability estimate of
error trials before the first correct trial (trial 0, Fig. 5a) and examined
the evolution of the population-averaged posterior probability on a
movement-by-movement basis (Fig. 5b). On average, the monkeys
executed 8.7 correct movements before the first correct trial. The
progression of the log(posterior probability) predicted by decoding
the neural activity of correct movements in the current block (‘Poster-
ior current’, Fig. 5b) shows, at the population level, the effect described
above for a single pair of neurons (Fig. 4c). Specifically, as the monkeys
figured out the correct sequence, the neural activity in the ensembles
became more similar to the activity during the correct trials, as reflected
in the increasing posterior probability. This curve flattens out at
just under –3, which is slightly less than the average log(posterior
probability) for the subsequent correct trials of the block (just
over –3; Fig. 5a). Thus the posterior probability increased slightly in
the correct trials.

The monkeys also tried movements that would have been correct for
the sequence in the previous block; this allowed us to assess how the
posterior probability of these movements evolved as the monkeys
discovered the correct sequence and realized that the sequence from
the previous block was no longer correct (‘Posterior previous’, Fig. 5b).
For the first movement of the new block, the larger value of the
posterior probability for the previous block reflects the fact that the

monkey was not cued when the sequence switched and therefore it
continued to execute the sequence that had been correct in the previous
block. The posterior probability then gradually decreased as the
monkey discovered the correct sequence for the current block.
Although these curves are not linear, they are monotonic and so we
tested the significance of their increase or decrease by fitting linear
regression models with log(posterior probability) as the dependent
variable and the normalized number of movements as the independent
variable. The slope of the regression was significantly different from
zero for both previous and current blocks (P o 0.01).

We also compared the posterior probability of the movements that
would have been correct for the previous sequence with the average
number of choices the monkey made that would have been correct in the
previous block. The average time evolution of the posterior probability
closely followed the time evolution of the choices (Fig. 5c). Thus, as the
monkey made fewer and fewer movements that would have been correct
in the previous block, the posterior probability of those movements
decreased as well. The results comparing the posterior probability and
the decisions for the current trial were in close correspondence (Fig. 5d),
although in this case the change in the posterior probability preceded
that in the behavioral data by at least one movement. In summary, as the
monkey made more movements consistent with the current sequence,
the neural response to each of those movements became more similar to
the neural response from trials when the monkey knew the sequence and
was executing the trial without mistakes.

It is important to consider the potential effect that changes in the
kinematics of the saccades might have on these results. If a saccade
parameter, such as direction, became more variable for a particular
movement and the neural activity reflected this variability, the decod-
ing analysis would potentially do worse as the variability increased and
this could be manifested as a decrease in the posterior probability. This
is unlikely, however, as the posterior probability changed in opposite
directions for movements that were correct in the previous and current
blocks (Fig. 5b). The eye movements would have to become more
variable for only those movements that were correct in the previous
trial and less variable for correct movements in the current trial. To
examine this issue directly, we carried out regression analyses that
estimated the effect of the peak velocity, the distance and the direction
of the saccades on the neural responses for individual movements. We
found that one or more of these variables was significant (Po 0.01) in
only 6% of the neurons. We carried the analysis one step further by
removing the influence of these variables on the activity of neurons for
which they had a significant effect and recomputing the posterior
probabilities. The results were similar, except that the posterior
probabilities were shifted up slightly, as removing the variability in
neural activity that was due to the variable kinematics improved the
decoding performance.

Given our analytical framework and the correspondence between the
posterior probability and the monkey’s choice behavior, one can ask the
following question: does the monkey learn more about which sequence
is correct from making a correct decision or an incorrect decision? To
answer this question, we fit the following regression equation to the
log(posterior probabilities) evaluated with respect to the sequence in
the current block: pðnÞ ¼ a0 + a1pðn� 2Þ+ a2cðn� 1Þ+ a3m, where
p(n) is the log of the posterior probability for movement n, c(n – 1) is a
variable that takes a value of 0 for an incorrect decision and 1 for a
correct decision for movement n – 1, a0; a1; a2 and a3 are regression
coefficients and m is shorthand notation for two dummy variables that
code the ordinal position of the movement in the sequence (m¼ [1 0],
[0 1] and [0 0] for the first, second and third movements, respectively).
The dummy variables for ordinal position were included to eliminate
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Figure 5 Trial-by-trial and movement-by-movement evolution of the posterior

probability and the monkeys’ choices. (a) Horizontal axis, number of correct

trials (n). Left vertical axis, number of errors made by the monkeys between

the nth and (n+1)th correct trials. Right vertical axis, population average of

the log(posterior probability), predicted by the decoding algorithm from the

neural activity during correct movements for each correct trial. The value for

0 correct trial is for the correct movements before the first correct trail.

(b) Log (posterior probability) evaluated from the neural activity according

to the correct sequence in the previous (green) and current (red) block

for the movements executed before the first correct trial. The average of

these values evaluated for the current block corresponds to the first value

plotted in a. All the movements from the trials before a correct trial

in each individual block were distributed evenly across the x-axis, such

that the first movement of the block had a value of 0 and the last movement
had a value of 1. A moving average was done to estimate the average of

the posterior probability along the x-axis. Thick lines indicate means; thin

lines indicate s.e.m. estimated by bootstrap resampling of the original

dataset. (c) Average log(posterior probability) for the sequence in the

previous block, plotted along with the percentage of the monkeys’ decisions

that would have been correct in the previous block. (d) Same as c, except

that the movements were evaluated relative to the correct sequence in the

current block.
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the possible confound of sequence position on the learning effect. In
essence, we asked how much the posterior probability increased
between the previous and subsequent movement, when the intervening
movement was correct or incorrect. We found that a2 was significantly
different from zero (Po 0.01) and that it had a value (mean ± s.e.m.)
of 0.206 ± 0.0024. The values of the other variables were as follows: a0 ¼
–2.954 ± 0.0059, a1 ¼ 0.060 ± 0.0004 and a3 ¼ [0.070 ± 0.0029, –0.087
± 0.0034]. Thus, the contribution of a correct movement to the
log(posterior probability) was 0.206 more than that of an error move-
ment. Furthermore, this effect was considerably larger than the effect of
the ordinal position of the movement, given by a3.

DISCUSSION

Neural activity in the prefrontal cortex related to a sequence of
movements reflects not only the movement being made but also the
sequence in which this movement is embedded. Such sequence-specific
neural activity has been documented in many brain areas and in many
protocols4–9,23–26. In our protocol, the correct sequence of decisions
had to be discovered by trial and error and this provided a unique
opportunity to examine how the neural coding of sequential move-
ments changes during this process. Although a similar trial-and-error
learning protocol has been used in a previous study7, the focus there
was on differential representation of new and well-learned sequences
and the study did not examine how learning was related to changes in
ensemble neural activity. In our protocol, all sequences were well
learned and there was no new sequence learning. Thus, in each
block, when the sequence was switched, the monkeys had to figure
out which sequence of the set of eight was correct for the current block.
We took advantage of the fact that neurons responded differently to the
same movement in different sequences to see how the neural responses
tracked the monkeys’ knowledge of the correct sequence. We found
that, as the monkeys learned the sequence and made more decisions
that were correct for the current block, there was an increase in the
posterior probability of the movements estimated from the ensemble
neural activity. Furthermore, as fewer movements were executed that
were correct for the previous sequence, there was a decrease in the
posterior probability of these movements evaluated with respect to the
previous sequence. Thus, the posterior probability of the movement
predicted by the neural activity closely tracked the monkeys’ knowledge
of which movements were correct.

To compute the action that has the largest expected utility, the theory
of optimal decision making requires modeling of both the value of an
outcome and the belief that the outcome will be obtained27. Thus, the
representation of belief or subjective knowledge shown here, along with
previous work describing a neural correlate of action outcome in the
same brain region28, implies that the prefrontal cortex can represent the
information necessary for optimal decision making. Previous work in
parietal cortex has also shown that neural activity can reflect a monkey’s
confidence in its decision. In a task in which monkeys had to estimate
the average direction of dots in a dynamic random-dot display, neurons
in the lateral intraparietal area reflected the amount of motion
coherence29,30; moreover, the monkey’s behavior also scaled with the
level of motion coherence, such that direction estimation was more
accurate when the dots were more coherent.

Learning-related changes in neural activity have been shown in
several brain areas. For example, as monkeys learn to associate pairs
of stimuli, neural responses to the two stimuli in inferotemporal cortex
become more similar19. Experiments in prefrontal cortex13 and the
basal ganglia17 have also shown that neurons reflect behavioral adapta-
tion to arbitrary task contingencies. In these studies, learning an
arbitrary stimulus-response mapping caused the representation of

movement direction to appear earlier in a delay period before the
execution of an eye movement. A gradual change in neural activity
related to the learning of stimulus-response contingencies has also been
shown in other frontal cortical areas14–16,18. Previous studies, however,
have not directly investigated whether these changes actually lead to an
increase in the information content of the neural responses. The
present study focused on changes in neural activity associated with
the selection of appropriate sequences of actions. In our task, the
response was not contingent on an arbitrary stimulus-response map-
ping, but rather on which sequence was correct in the current block.
Furthermore, we showed directly that the information coded in the
ensemble neural activity about the correct sequence increased as the
monkey discovered the correct sequence.

We showed that the fraction of the monkey’s choices that would be
correct for the current sequence increased slowly when a new sequence
was introduced. This fraction of choices is an overt measure of the
monkey’s internal prediction of which movement would be correct and
consequently of which sequence it should execute. Our analyses also
demonstrated a close link between the patterns of activity in ensembles
of simultaneously recorded prefrontal neurons and the fraction of the
monkey’s choices that were correct for the current or previous
sequence. Thus, the dynamics of the posterior probability, which
closely follows the monkey’s pattern of decisions, reflects the monkey’s
subjective knowledge of which sequence is correct.

METHODS
General. Two male rhesus macaques were used in this study. All surgical and

experimental procedures conformed to the guidelines of the US National

Institutes of Health and were approved by the University of Rochester

Committee on Animal Research. The recording chamber (18-mm diameter)

was placed over the prefrontal cortex in a sterile surgery using stereotaxic

coordinates derived from structural magnetic resonance imaging (MRI). Neural

responses were recorded using a 16-channel multielectrode recording system

(Thomas Recording) and single-unit spikes were sorted online using the Plexon

data acquisition system (Plexon). The task was presented to the monkeys on a

CRT monitor. A custom Microsoft Windows–based program was written to

control the task and coordinate data acquisition with the Plexon system. Eye

movements were monitored using a video eye tracking system (ET-49, Thomas

Recording). Location of the frontal eye field (FEF) was verified in both

monkeys using microstimulation. Electrode penetrations were considered to

be within the FEF when a 50-mA peak-to-peak bipolar current elicited an eye

movement at least 50% of the time. The location of the FEF found using

microstimulation corresponded to its predicted location in the chamber

derived from MRI coordinates. All penetrations were anterior to the FEF

except one penetration in each monkey.

Behavioral task. The monkeys were trained on a sequential decision-making

task (Fig. 1). In this task, there were eight possible correct sequences of eye

movements presented on a 3 � 3 grid of targets spaced by 5.31 of visual angle

(Fig. 1a). The monkeys began a trial by acquiring a central fixation point

(Fig. 1b). After a 1-s hold period, two targets were presented to the left and

right of fixation. One of the targets was the correct choice in a given block. The

monkey was allowed to make a saccade as soon as the target appeared. If the

monkey made a saccade to the correct target and maintained fixation for

500 ms, two additional choice targets were presented above and below the

central fixation point and the monkey was required to select one of these

targets. The third pair of choice targets were presented to the left and right of

the previous fixation target. If the monkey made an incorrect decision, the

choice targets were extinguished and it had to return to the previous fixation

target (not necessarily the beginning of the sequence). It was then presented

with the same choice targets again. After making three correct decisions,

regardless of the number of intervening incorrect decisions, the monkey was

given a juice reward. The total trial length was constrained to be less than 7 s, but

this limit was rarely reached. The sequences were presented in a randomized
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block design, such that one block of ten trials had to be executed for each of

eight sequences before the same sequence was presented again. Data were inclu-

ded in the analysis only if at least two blocks were completed for each sequence.

Monkeys were trained for 3–5 months on the task before the recordings began.

Data analysis. The neural activity for each movement was quantified as the

spike rate in a 500-ms window starting 250 ms before the saccade. The ANOVA

results for sequence and movement were carried out using type III sum of

squares, as the design was not balanced with respect to the two factors.

We used a Gaussian decoding analysis described in detail previously31. This

analysis assumes that the distribution of neural responses is Gaussian for a

particular movement in a sequence. Thus, we have a Gaussian likelihood

function given by

pðrjt ¼ iÞ ¼ j2pQj�1=2 exp � 1

2
ðr � miÞTQ�1ðr � miÞ

� �
ð1Þ

where r is a vector of spike rates for a movement, mi is the vector of mean spike

counts for movement i, the superscript T indicates transpose, Q is the noise

covariance matrix pooled across conditions and || indicates the determinant of

the matrix. For the decoding analyses, i takes on values between 1 and 24.

The posterior probability that a particular target led to the response under

consideration is given by Bayes’ theorem:

pðtjrÞ ¼ pðrjtÞpðtÞ
pðrÞ ð2Þ

where t is one of the targets. In this study we assumed a flat prior probability,

and thus p(t) is a constant. The normalization is given by

pðrÞ ¼
X
t

pðrjtÞpðtÞ ð3Þ

In the analyses where we consider the log of the posterior probability, the

posterior probability is given directly by the left side of equation. (2). To carry

out classification explicitly, movements were predicted by selecting, from the

conditional distribution of targets, the movement with the maximum prob-

ability given the neural activity:

t̂ ¼ arg max
t

pðtjrÞ ð4Þ

Because we used a flat prior probability, decoding with either maximum

likelihood estimation (that is, picking the stimulus that maximizes equation

(1) or maximum a posteriori estimation (equation. (4)) gave the same results.

The decoding analyses on ensemble data for the movements in correct trials

(Fig. 3b) were done using twofold cross-validation on the data from all correct

trials. In other words, the means and covariances in the likelihood (equation

(1)) were estimated using half the data and then classification was carried out on

the other half. The estimation and classification data were then switched and the

analysis was repeated. For the decoding analyses that characterized the difference

in the posterior probability between trials before and after a correct trial had

been executed (Fig. 5a), the posterior probabilities were calculated using cross

validation. For the remaining analyses on the movement-by-movement evolu-

tion of the posterior probability (Fig. 5b–d), the posterior probabilities were

determined using means and covariances calculated from all correct trials from

all blocks. For the posterior probability and the choices evaluated with respect to

the correct movement in the current block (posterior current in Fig. 5b), we

analyzed neural activity from movements that were correct for the sequence in

the current block. For the analyses that calculated the posterior probability for

the previous block, we analyzed movements that would have been correct for the

sequence in the previous block. The posterior probability for all movements was

calculated by entering the corresponding response of simultaneously recorded

neurons, r, into equation (1) and using the value of the mean response, mi, that

corresponded to the movement from the appropriate sequence.
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