Learning to Move Amid Uncertainty
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Scheidt, Robert A., Jonathan B. Dingwell, and Ferdinando A. human survival. A species unable to compensate for prevailing
Mussa-Ivaldi. Learning to move amid uncertainty. Neurophysiol \inds or the refraction of light through water would be il

86: 971-985, 2001. We studied how subjects learned to make moyiiaq 1o yse the basic tools (such as spears and nets) necessary
ments against unpredictable perturbations. Twelve healthy human

subjects made goal-directed reaching movements in the horizo i flghtlng off foes and_ obta_lnlng food. In such instances,
plane while holding the handle of a two-joint robotic manipulator. ThENVironmental perturbations influence the control of upper
robot generated viscous force fields that perturbed the limb perpd@b movement in an unpredictable way.

dicular to the desired direction of movement. The amplitude (but not A number of studies have investigated the processes in-
the direction) of the viscous field varied randomly from trial to trialvolved in motor adaptation by exposing subjects to specific
Systems identification techniques were employed to characterize hﬁé’rturbations and quantifying the changes in their responses

subjects adapted to these random perturbations. Subject performa&;:gr time. For example, some experiments have explored the

was quantified primarily using the peak deviation fromastralght-llg(gh ges in reaching and pointing movements of the hand

hand path. Subjects adapted their arm movements to the sequen d by displ def - f the Vi | field
random force-field amplitudes. This adaptive response compens ced by displacements or deformations of the visual fie

for the approximate mean from the random sequence of perturbatiéht@nagan and Rao 1995; Held and Freedman 1963; Helmholtz
and did not depend on the statistical distribution of that sequend®25; Wolpert et al. 1995). Other experiments have perturbed
Subjects did not adapt by directly counteracting the mean fielle moving arm with mechanical disturbances that emulated
strength itself on each trial but rather by using information abotite effects of inertial loads and/or viscoelastic media (Bock

perturbations and movement errors from a limited number of previou990; Lackner and Dizio 1994; Shadmehr and Brashers-Krug
trials to adjust motor commands on subsequent trials. This strategyg7; Shadmehr and Mussa-Ivaldi 1994). Each of these studies
permitted subjects to achieve near-optimal performance (deﬁ”ede?ﬁployed perturbations with fixed and repeatable structures.
minimizing movement errors in a least-squares sense) while majs - oya il Shadmehr and Mussa-lvaldi (1994) used a ro-
taining computational efficiency. A simple model using informatio gtic device to apply mechanical forces to the hand. These

about movement errors and perturbation amplitudes from a sin had a fixed li d d h d of th
previous trial predicted subject performance in stochastic envirgf®/C€S had a fixed linear dependence on the speed of the

ments with a high degree of fidelity and further predicted key perfopHbject’s hand.
mance features observed in nonstochastic environments. This suggestdowever, the perturbations that people encounter in every-
that the neural structures modified during motor adaptation requiay life do not always have a repeatable and consistent struc-
only short-term memory. Explicit representations regarding movedre. Consider, for example, a worker whose job might be to
ments made more than a few trials in the past are not useddort packages of varying size and weight into bins, bags, or
generating optimal motor responses on any given trial. slots. Each of these packages will have different inertial prop-
erties and will impose different loads on the arm as it moves
toward the desired target position. If the worker carries out this
task for a prolonged time, is it reasonable to expect some
A remarkable and well-studied ability of the human brain iadaptation to take place? In this case, the perturbations are not
that of adapting the execution of limb movements to physiciked but vary from object to object and follow a given statis-
changes in operating conditions such as those that naturaital distribution depending both on the object properties and
occur during growth, aging, and exposure to altered mechaai the sequence of movements in the task. Can the motor
cal environments (Bock 1990; Conditt et al. 1997a; Dizio argl/stem adapt to a variable environment? And if so, how is this
Lackner 1995; Goodbody and Wolpert 1998; Happee 199%laptation accomplished? Does the motor system use informa-
Lackner and Dizio 1994; Scheidt and Rymer 2000; Shadmeifon it acquires on a trial-by-trial basis, or does it attempt to
and Mussa-lvaldi 1994; Thoroughman and Shadmehr 1996xtract some definable statistical property about the perturba-
This process is known as motor adaptation. Motor adaptatiortiens it encounters, such as the mean or the most likely (i.e., the
a form of learning that evolves over a series of movementsode) perturbation? Can subject behavior in a stochastic en-
whereby some original performance of a given task is restoreidlonment reveal how the neural mechanisms involved in mo-
in the presence of an external perturbation. This ability to adapt adaptation use information from previous trials to modify
to environmental changes has played an important role nmtor commands on subsequent trials? These questions were
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addressed in a set of experiments that employed engineetditgcted away from the subject’s body along a line (the positiakis)
methods of systems identification and a robotic system R@ssing through the center of rotation of the shoulder. The subjects’

generate sequences of perturbing force fields having magiins were supported agair]st gravity by a sling attached to the 8-ft
tudes that varied randomly from trial to trial. ceiling. The support was adjusted so that the upper arm was abducted

90°. The shoulders were restrained using a Velcro torso support.

In the present experiments, adaptation was examined in %ginning” and “end” targets corresponding to a 20-cm reach in the
context of goal-directed reaching movements. Twelve subjehv%q

) - gne of the arm were presented on a computer monitor just above the
executed reaching movements between two targets in the hakmiouiandum. The position of the hand was displayed as a small

izontal plane while holding the handle of a two-joint roboti¢ursor on the overhead monitor. Subjects could see both their arm and
manipulator. The robot applied perturbing forces to the arfhe cursor representing it at all times.
during each movement. The amplitude (but not the direction)The robotic manipulator applied perturbing force fields to the arm
of the perturbing force field varied randomly from trial to trialduring each movement. perpendicular viscous fieldas designed to
Each Subject’s motor response to the sequence of perturbﬂﬁ@ECt _the hand perpendicglarly from its intendgd path with a force
fields was quantified using the peak deviation from a straigftoportional to hand velocity along its path (FigB)1 The forces
line hand path. The trial-to-trial sequences of motor errors wefgplied to the subject's hand during tite movement were defined
analyzed, and the results demonstrated that subjects did adapt F 0 110 %
their motor behavior in response to the random sequences of [ FX } =B [ 0 o ][ . ]
. . % y
force fields presented at the hand. Furthermore subjects com-
pensated for the approximate mean field of the stochasfiferex andy were the two components of the hand velocity along the
sequence. This behavior did not depend on specific distributioredial/lateral X) and proximal/distaly) directions,F, andF, were
properties of the sequence. Finally, subjects accomplished tiig two components of the force applied by the robot along the same
adaptation by using memories of the most recent perturbatistiections.B; was a random real number between 0 and 30 Newton

and the most recent performances only. Adaptation was §§gond/meter (Ns/m) such that the amplitude (but not the direction) of
ﬂ? perturbing force field varied randomly from trial to trial. Move-

accomplished by directly counteracting the mean field stren " : 4o alona th itivrecti d perturbi
on each individual trial. The present findings are consisteREnts Were always made along the positietrection, and perturbing
arces were always directed to the left. It must be stressed that during

Wm}l recelnt experiments that suggested a prominent funqtione%ch movement, subjects experienced variable forces that depended
prefrontal cortex in the early stages of motor adaptation fQearly on their instantaneous hand speed. However, the magnitude of

()

perturbing fields (Shadmehr and Holcomb 1997). the environmental impedancB,, remained constant for the duration
of each individual movement and changed only between trials. Sub-
METHODS jects could experience peak hand forces up to 30 or 40 N in this field.

Subjects could perform the task easily in the time allotted; however,

Twelve human subjects with no known neuromotor disorders coreaching accuracy was influenced by the perturbations. During each
sented to participate in this study. Subjects executed half-secoti@l, instantaneous hand positions were recorded using rotational
20-cm reaching movements with their dominant arm in the horizonthcoders on the robot’s motors and hand forces were recorded using
plane while holding the handle of a two-joint, robotic manipulatoa 6 degree-of-freedom load cell mounted at the handle of the robot.
(Fig. 1A). The robot was comprised of a five-bar linkage with torque Two stochastic perturbation sequences were useekperiment 1,
motors controlled by a dedicated PC (Scheidt et al. 2000). Subjefasr subjects were presented with a sequence of 200 trials in which the
were instructed to “reach from the beginning target to the endirigrce-field gain,B; (Fig. 2A), followed a Gaussian distribution (Fig.
target in one half second.” The computer provided qualitative fee@B). This distribution had a nonzero mean corresponding to informa-
back of movement duration after each trial (either too fa€d:45 s, tion about the perturbation sequence that subjects might learn. The
too slow:>0.55 s, or just right: 0.45—0.55 s). Subjects were instructedean perturbation amplitude was 15.2 Ns/m with a variance of 24.7
to relax after each movement while the manipulandum moved thks/m. This sequence was designed to ensure insignificant correlation
hand slowly back to the beginning target. This protocol was designketween perturbation magnitudes on consecutive trials separated by
for allowing subjects to experience the limb’s mechanical enviromrore than 40 trials (Fig. @). The significance of each correlation
ment along a limited set of trajectories. Reaching movements wdesm was evaluated by comparing the correlation magnitude at each

€« €« €« <« < ) .
-— — — — < Fic. 1. A: schematic representation of the 2 degree-of-freedom
- “ - - - robotic manipulandum used in the present experiméhtgraph-
w - - - - - ical representation of the perpendicular field presented to the sub-
E o - - - - - jects. Perturbing forces were directed perpendicular to the direction
> — . . — - of intended motion with amplitudes proportional to hand velocity
— — — — — along the intended movement direction. Force-field gains (but not
- S S 5 direction) varied randomly from trial to trial.
-4
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Fic. 2. A: the trial-to-trial sequence of force-field gair3)(used inexperiment 1(4 subjects)B: unimodal Gaussian probability
density function used to generate the random sequerfcednautocorrelation of the Gaussian sequence shownTie two horizontal
lines correspond to the 95% confidence interval bounds (i.e. dthien2s) on the correlation magnitudes. Note that no correlation term
within the 1st 40 trials (except the unit autocorrelation at 0 lag) exceeded the 95% bounds to attain significarfee<ad b level.
D: the trial-to-trial sequence of force-field gairg)(used inexperiment 48 subjects)E: bimodal probability density function used to
generate the random sequenc®irf: autocorrelation of the bimodal sequence showb.iThe two horizontal lines correspond to the
95% confidence interval bounds on the correlation magnitudes. While each unimodal subpopulation contained no significant correlations
within 40 trials, the shuffling process used to combine the 2 individual populations gave rise to spurious correlations attval tiagjs.

integer lag value to an estimate of the 95% confidence intervaials with a bimodal probability density function (Fig. B, andE).

bounding zero correlation 2= 2/A/N) (Box et al. 1994). All four This bimodal sequence was constructed by shuffling together two
subjects were exposed to the same sequence of perturbationsuriimodal sequences with individual Gaussian distributions having
experiment 2gight subjects were presented with a sequence of 4@88ans of 6 Ns/m (175 trials) and 25 Ns/m (225 trials), respectively.
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While each individual subpopulation contained no significant corre- These correlation analysis results were then used to guide construc-
lations between perturbations separated by as many as 40 trials,tibie of a model of motor adaptation during reaching. Specifically,
shuffling process used to construct the bimodal population gave risertovement error on each trial was modeled as a linear combination of
spurious correlations at trial lagsi40 trials (Fig. F). All eight previous movement errors as well as present and previous perturba-
subjects were exposed to the same sequence of perturbations. fibisamplitudes. The result was a parametric model of motor adapta-
bimodal stochastic perturbation sequence had greatly differing meam that was linear in its inputs

(15.5 Ns/m) and mode (25 Ns/m) values and was constructed to L .

distinguish whether subjects adapt more closely to the mean or the . — E P Eb B 3)

mode of a given perturbation sequence or whether adaptation gets A e =

“trapped” in the smaller, local maximum designed into the bimodal - N Lo
probability distribution function. wherega, andb, were coefficients weighting the relative importance of

previous errors€ ;) and previous perturbation magnitude; ) on
. subsequent errorsandk were indices of summation while and M
Data analysis were limits on the number of significant terms in the model. Values
Simple measures of kinematic and kinetic behavior were usedf®§ L andM were obtained directly from the correlation analysis. This
assess subject motor performance on each trial during this gd&edel represents an autoregressive process with external input (i.e.,
directed reaching task. “Movement error” was defined as the pe@Rk ARX model) (Ljung 1999). Terms with nonzeapcoefficients are
deviation of the hand from a straight-line trajectory passing betwe@Htoregressivéerms because they define the dependence of the cur-
the initial and final targets (Krakauer et al. 1999). Movement erré@Nt movement error on previous movement errors. Terms with non-
was used to quantifiinematicperformance, assuming that subjectgero by coefficients aremoving averageerms of the external input
intended to make straight-line movements of their hands. This mé#cause they define the dependence of the current movement error on
sure of motor performance has previously been found to motivaesliding window average of current and previous perturbation am-
motor adaptation during reaching (Scheidt et al. 2000). The peak hatiéudes. Becausé&q. 3 defines a discrete-time difference equation,
force that was generated perpendicular to the direction of moveméit stability and steady-state behavior of this model of motor adap-
quantifieddynamicperformance. tation was analyzed using transform techniques (Oppenheim and
An exponential function was fitted to the trial series of movemersichafer 1989). . . . .
errors to characterize the rate at which subjects compensated for th&he capacity of this model to predict subjects’ adaptation to the
random sequence of perturbation gains. This model had three ffagdom sequence of perturbations was evaluated. These predictions

parameters: gaim, time-constantj, and offset,C were compared with the predictions of two alternate, but viable,
‘ learning algorithms. The first alternative model accumulated an ex-
E=Ad"™+C (2) plicit representation of the mean perturbation strength by “memoriz-

| ing” the perturbation sequence trial by trial. This explicit representa-

captured the overall rate of change in movement error, while t§g Of the running-average mean perturbation was used to

constant C) described any steady-state bias in these time series. -lcr%[npensate for the perturbatlon on th_e next tf'a'- The se_qond alter-
free parameters of this model were fit using a simplex search al tive model was an incremental learning algorithm that .utlllzed local
rithm (Press et al. 1988) eighting of the most recent movement errors to predict and com-

A regression analysis of movement error versus perturbation apgnsate for the magnitude of the next perturbation. This model in-

plitude was performed to determine the field strength (i.e., perturb%{l-Jded the possibility of nonuniform and nonlinear attention models
tion gain) that subjects adapted to. The strength of correlation betwiémere*)y learning could either attend closely to or ignore trials where

whereE; was the computed movement error on tridlhe exponential

these two variables and the linearity of this relationship were alf3¢ Perturbation amplitude was “surprising” or *irrelevant” (Atkeson

evaluated. The amplitude of the field strength to which subjec‘f al. 1997). Each model was first fit from the subjects’ data from the
adapted was estimated from the zero crossing of the resulting regn’Qg'-gll IlOO mtﬁvementls ”2 tdhe expzflmetnts_} Thg_l_ﬁ)erformagp? of t?acltw
sion line since the perturbation gain value at which the regression li €l was then evaluated according 1o 1ts ability 10 predict subjec

passed through zero error indicated the field strength at which subjéggvet?egt errorst(ﬁn the last 100 movetmderflts. I\\ﬁztlj:el performance wafs
would exhibit error-free (straight line) trajectories. This analysi§1uan ified using the variance accounted for ( ) as a measure 0

however, provides no explanation fapw subjects adapted to this goodness-of-fit

particular field strength. Subjects could adapt by directly counteract- var (residual}

ing this “zero error” perturbation magnitude itself on each and every VAF=1-—+—"—= 4)

trial; i.e., by executing a control strategy that anticipated the same var (datg

constant field trial after trial. If so, movement errors would vary

linearly with perturbation strength. Alternatively, subjects could enkgsyLTs

ploy a continuously evolving strategy of using information about

perturbations and movement errors from a limited number of previo&ibjects compensate for the approximate mean of the

trials to adjust performance on subsequent trials. Because suchapdom trial sequence of perturbations

strategy could also result in a linear relationship between movement

error and perturbation strength, the regression analysis described iAn overhead view of averaged hand paths made desipgr-

the preceding text could not distinguish these two possibilities.  iment 1 (Fig. 3A; unimodal perturbation sequence) shows that
The preceding regression analysis was extended to evaluate $hpjects exhibited substantial kinematic deviations to both the left

dependence of movement errors on previous perturbations and preyid right even though they experienced forces that pushed only to

ous errors using autocorrelation and cross-correlation analyses. Spg- |eft. To compare across trials, hand-path data were aligned

cifically, the autocorrelation prloflle of the movement error trial s Jith respect to the onset of movement (the point in time when
quence and the cross-correlation between the error and perturba on 4 d first exceeded 0.1 m/s: FB). &nd averaged into six
gain trial sequences were calculated. If subjects anticipate a cons fipd speed first exceeded U. s; Fig). average 0S

field strength when exposed to an uncorrelated sequence of perturBS” 0f 5 Ns/m width each (05, 5-10, 10-15, etc.). Move-

tions (e.g., the mean field strength), then their performance on edBgnts from trials with field strengths-20 Ns/m resulted in
trial must also be uncorrelated with that of previous trials. Thigajectories that deviated markedly to the left (i.e., in the direction

hypothesis was directly tested by this analysis. of the applied force). However, hand-path deviations were con-
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FIG. 3. Results fromexperiment Junimodal perturbation sequencé).overhead view of averaged hand paths from 1 subject
across the entire experiment. Trials were averaged into 6 “bins” of 5 Ns/m width (0-5, 5-10, 10-15, etc.). Trials with field strengths
=25 Ns/m were undercompensatéefttmost profilg, while trials with field strengths=5 Ns/m were overcompensatedjht-most
profile). Movements were truncated at the point of time near the end of movement where the hand speed profile reached a transient
minimum. Average trajectories after the time of truncation are shown with triangular syrBbalgerage hand speed profiles for
the same subject. The vertical dashed line indicates the approximate time at which hand speed reached a transient minimum,
separating the hand speed profile into 2 pe@ksnovement errors for this subject plotted against trial number. The dark, solid line
represents the exponential best-fit estimate of movement &qor2. D: perpendicular hand force profiles obtained by averaging
the data in the same manner asAimandB. E scatter plot of movement error vs. perturbation strength, exhibiting a nearly linear
relationship ( = 0.82).F: best-fit linear regressions from the scatter plots of all subjects &operiment 1(0.73 < r < 0.84).

sistently toward the right (i.e., opposite to the direction of thgShadmehr and Mussa-Ivaldi 1994). These aftereffects are a clear
applied force) for fields with gains.10 Ns/m. Movements made indication that subjects compensated for the perturbations by
in weaker fields had hand-path errors that were approximatelgopting some automatic and predictive mechanism. Force fields
mirror symmetric to those made in stronger fields. Kinematioughly corresponding to both the mean (average) and mode
errors made in the weakest fields were nearly identical to I@aost likely) disturbance (10—15 Ns/m) resulted in movements
sponses observed when perturbing force fields were unexpectedip the least curvature. Note that these movements were only
removed after adaptation (Scheidt et al. 2000). This finding approximately straight, corresponding to the steady-state bias in
consistent with traditional measures of aftereffects of adaptatiorovement error (constag in Eq. 2.
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Average hand speed profiles (FigB)3typically demon- Adaptation to the approximate mean, not to the mode
strated two distinct peaks. The secondary peak in the hanqAn overhead view of averaged hand paths made by one
speed profile could be the result of several mechanisms incIEg'|

. e X i . bject fromexperiment 2(Fig. 4A; bimodal perturbation
ing, but not limited to, active correction under visual feedbac equence) shows that again, movements were either deflected

reflex-mediated adjustments due to the mismatch between {h&ne left or to the right. Average hand speed profiles (FB). 4
intended and actual final joint posture (the mismatch being dggnibited the same biphasic pattern foundexperiment 1.
to the perturbation) or the interaction of limb and manipulartonsequently’ the data frowperiment avere truncated in
dum dynamics (Shadmehr and Mussa-lvaldi 1994). Th@me way as iexperiment 1The truncated and averaged hand
present experiment was not designed to distinguish betwgBvements (Fig. A) exhibited consistent deviations toward
these alternatives. Therefore movements were truncated atttieright when movements were made in fields with strengths
point of time near the end of movement where the hand spesfd<=10 Ns/m and toward the left when movements were made
profile reached a transient minimum (vertical line in Fi@, 3 in fields with strengths o&=20 Ns/m. Force fields roughly
solid lines in Fig. 2 returning to final target location). This corresponding to the mean disturbance (10—15 Ns/m) resulted
limited subsequent analysis to the portion of movement thattrajectories with the least curvature although they were not
was predominantly feedforward. ideally straight. These results demonstrate that adaptation to a
An exponential function&q. 2 was fit to the movement sequence of perturbations with randomly varying magnitudes
error trial series (dark solid line in FigG3, confirming the Cconverges to the approximate mean perturbation magnitude
presence of a steady-state bias in movement error. Figtire "gther than the most likely magnitude.
shows a rapid decrease in movement error within the firstFitting an exponential functiongg. 2 to the movement

1020 trials (time constant 2.4 trials). Time constants\( €'TOr trial series (dark solid line in Fig.G} produced results
in Eq. 2 for all four subjects averaged 3.2 0.74 trials that varied widely across subjects [time constant 54.8 +

(mean = SE mean). The residual steady-state movemeht2 (SE) trials; range= [11.2, 167] trials;n = 8]. Conse-
error (constanC in Eq. 2 was observed in all four subjectsquenﬂy’ this traditional measure of learning suggests that the

average 12.3- 2.7 mm). indicating that subiects com enbimodal perturbation sequence abolished (or at least slowed)
(averag : - ), indicating subjects PE€Nihe initial rapid learning observed @xperiment 1However, as
sated only approximately for the mean of the random trigh ., in the following text, subject performance in both

sequence. These observations were consistent across all eriments can be described using a single, parsimonious
subjects exposed to the unimodal perturbation sequenggscription of motor adaptation. ’

Subjects did indeed adapt in response to the random serjgyre O displays average perpendicular hand force pro-
quence of perturbations. files measured at the handle in the bimodal experiment. The
Profiles of the hand forces generated perpendicular to thgerall shape of the profiles was similar to those observed in
direction of movement (Fig.3) provide further evidence of the unimodal experiment with the initial peak in perpendicular
adaptation to the stochastic sequence of perturbations. Subjéstee generated in the weakest fields giving rise to the unde-
generated forces dominated movements made in the wealgistble deviation from the target indicative of aftereffects of
fields (the smallest force profile with biphasic shape), whereadaptation. Again this is a kinetic aftereffect of adaptation
robot-generated forces dominated movements made in #imilar to that observed in the first experiment. As in the
strongest fields (the largest profile with monophasic shapghimodal experiment, the hand force profiles were smooth and
The initial peak in perpendicular force generated by the subjdbe restoring forces generated at the end of the movement did
in the weakest field €12 N) was directed opposite to thenot appear to be distinct pulses. _
forces imposed by the robot and was not necessary to move th&s in the unimodal experiment, subjects exposed to the
hand toward the target. This excessive force caused the limgfnodal perturbation sequence exhibited a linear relationship
deviate substantially from the target, producinkjreetic after- P&tween movement error and perturbation strength .85 in
effect of adaptationConsequently, restoring forces (the negd-'9- 4E; 0.-83 < r < 0.94 for all 8 subjects). Again, the point

tivelv directed peak in Fig.B) were required to move the limb of zero error on these regression lines was taken as the figld
to thye final target 9.8 q strength that was best compensated for through the adaptive

An analysis of movement error versus perturbation ampﬁrocess. These eight subjects adapted to an average field

. L . trength of 11.33 Ns/m with a 95% confidence interval of
tude (Fig. 3,E andF) indicated that these two variables wer . : . .
well fit by a linear relationship within the range of our exper—8'61’ 14.04] Ns/m (Fig. ). For all eight subjects, the major

iment ¢ = 0.82 in Fig. &; 0.73< r < 0.84 for all 4 subjects). and minor peaks of the bimodal probability density function (6

. i X 0 -
The point of zero error on these regression lines indicates ?%d 25 Ns/m, respectively) both fell outside this 95% confi

! nce interval. However, although the adapted field strength in
I:Sgd;rtéigg;h(tlh;gmarﬁ E?ﬁﬁggig?g&edl_fg rl\ﬁz;%u?or: g]”e 4ad e bimodal sequence was substantial, subjects did not quite

. Co . . . ompensate for the mean perturbing fieRl € 15.5 Ns/m),
subjects in Fig. B). This adapted field strength approxmateaC B .
but did not quite attain, the mean value of the distributi®r] éven after 300-400 movements. Somewhat paradoxically,

0.01; Student's-test rejecting the null hypothesiy;: B .., = subjects actually adapted to a perturbing field strength that was

B = 15.2 Ns/m). Thus subjects compensated for forge ﬁelgépenenced rarely.

somewhat less than (but coarsely approximating) the mean . . .
gain (i.e.,B; =~ B), greatly undercompensated large force-fiel fly recent memories contribute to adaptation

gains (i.e.B; >> B), and greatly overcompensated small force- The Gaussian-distributed random trial sequence (Figh 2,
field gains (i.e.B; << B). andB) was used to perturb subjects while adapting because this
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Fic. 4. Results fromexperiment Zbimodal perturbation sequencd). overhead view of averaged hand paths from 1 subject.
Trials were averaged into 6 bins of 5 Ns/m width (0-5, 5-10, 10-15, etc.). &gieriment lirials with field strengths25 Ns/m
were undercompensateéft-most profilg, whereas trials with field strengths5 Ns/m were overcompensataéyht-most profilg.
Movements were truncated at the point of time near the end of movement where the hand speed profile reached a transient
minimum. Average trajectories after the time of truncation are shown with triangular syrBbalgerage hand speed profiles for
the same subject. The vertical dashed line indicates the approximate time at which hand speed reached a transient minimum,
separating the hand speed profile into 2 pe@ksovement errors for this subject plotted against trial number. The dark, solid line
represents the exponential best-fit estimate of movement dtpr. Note that movement error was not well fit by a falling
exponential function in the bimodal experimebt. perpendicular hand force profiles obtained by averaging the data in the same
manner as i andB. E: scatter plot of movement error vs. perturbation strength, exhibiting a nearly linear relationshp&5).

977

F: best-fit linear regressions from the scatter plots of all subjects &operiment 20.83 < r < 0.94).

input to the motor adaptation process was both uncorrelateguromotor controller. Despite this lack of correlation in the
from trial to trial (up to a lag of 40 trials; Fig.@ and “rich” sequence of perturbing fields, significant trial-to-trial correla-
spectrally (Marmarelis and Marmarelis 1978). Driving eactions were observed in subjects’ motor output (Fig. 5). Corre-
subject’s motor system with an uncorrelated trial sequenlzgions between movement error and perturbation gain (Fig.
ensured that any trial-to-trial correlations observed in th&A) exceeded statistical significance 5% CI) not only on
subject’s motor output did not originate from the perturbatioconcurrent trials (i.e., lag= 0) but also on the preceding trial
sequence but rather from information processing within tl{|ag = +1). The sign of the correlation at lag 1 was opposite
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Fic. 5. Correlation analysis of motor performance during adaptation for a typical subjecéfmeniment 1. Across-correlation
magnitude between movement error and perturbation gain. Horizontal lines correspond to 95% confidence interval bounds (i.e., the
20 limits) on the correlation magnitudes. Movement error on a given trial correlated with perturbation gain on that same trial and
with perturbation gain on the previous trial as subjects compensated for the most recently experienced pertiriaatiocor-
relogram of movement error. Movement error on a given trial correlated with movement error on the previou§: trial.
cross-correlation magnitude between peak perpendicular hand force and the perturbation gain, exhibiting a lag-1 correlation with
perturbation amplitudeD: cross-correlation magnitude between peak perpendicular hand force and movement error, which also
exhibited a significant correlation with previous movement error @ag-1), consistent withA.

that at lag O, indicating that subjects attempted to redusgnificance £95% CI) only on concurrent trials (i.e., at 0 lag)
movement error on each trial by countering the previous perd at a lag of one trial. Significant correlations between peak
turbation. Significant correlations between movement error ahend force and perturbation gain extended back no more than
perturbation gain extended back no more than two trials for &Vo trials for all four subjects irexperiment 1Correlations
of the four subjects exposed to the perturbation sequence wittween movement error and peak hand force (Fi). &x-
the unimodal distribution. Movement errors on a given trialeeded statistical significance only on concurrent trials and, at
also exhibited substantial correlations with errors generatedaiiag of one trial, a result entirely consistent with the findings
the preceding trial (Fig.B). By definition, the autocorrelation of Fig. 5A.
function is symmetric about 0 lag. Thus correlations at any The significant correlations at zero lag (FigA,C,andD)
given lag are reflected at the corresponding lead with meere due in part to mechanical interaction between the robot
violation of causality. Significant autocorrelation terms werand the finite impedance of the subject's arm. Larger forces
found at a lag of one trial for three of the four subjects (thenposed by the robot on the hand resulted in both larger
remaining subject showed no significant correlations beyodeviations of the hand from its intended path and in greater
lag 0). Again, the sign of this correlation was negative indforces being recorded at the handle. However, significant cor-
cating that subjects attempted to reduce movement errorsrefations at nonzero lags cannot be explained by mechanical
each trial by countering movement errors generated on tiikeractions. These lag 1 correlations indicate that subjects
previous trial. used explicit information regarding the strength of the pertur-
Similar correlation analyses were performed on the peéltion from the previous trial to preprogram the motor re-
hand forces generated perpendicular to the intended directsponse on each subsequent trial. Subjects also utilized infor-
of movement (Fig. 5C and D). Correlations between peakmation about previouperformanceto update motor behavior
hand force and perturbation gain (Fig-)sexceeded statistical on subsequent trials. The lack of significant correlations be-
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yond two previous trials indicates that explicit memory repregserturbations is compensated using properly weighted cancel-
sentation of more remote trials was not used during motlation of both previous perturbation amplitudes and previous
adaptation. Had subjects adapted to the stochastic sequenaa@iement errors.

perturbations by directly counteracting some constant field

strength on each trial (e.g., the mean), their motor output wouddlep response analysis

likewise be uncorrelated with the input. This hypothesis is , .

clearly refuted by the present findings. These findings support?lthough the model performed quite well in response to the

the hypothesis that explicit information of only one or twtochastic input sequences from which it was originally de-

previous trials is sufficient to allow subjects to compensate fE¥€d; it was also important to determine how well this model

perturbations. sequences of input perturbationsquation 5was used to

simulate movement errors in response to a step increase in
perturbation strength that included a simulated “catch trial”
near the end of the input sequence (Fig, Top. This input

The preceding analyses suggest that subject performaseguence was specifically designed to mimic the constant force
(quantified by movement error) exhibited on any given tiial,field gains and catch trials used in previous motor adaptation
can be predicted solely from the field strength on that tBgl ( experiments (e.g., Shadmehr and Mussa-Ivaldi 1994). Average
and from the field strength and error exhibited on the previogsefficient values from the unimodal experiment (Table 1)

Predicting motor performance

trial (B;., ande;_;, respectively) were used to define the model parameters. When presented
with a step increase in perturbation strength, the simulated
€ = 461 + bB + b By (5) movement errors rapidly approached their asymptotic value

) o ] (within 3—4 trials) and exhibited a small steady-state error at
Regression coefficientsa, by, b,) were estimated over the arge trial numbers as did subjects in both experiments. The
initial 100 trials for each subject iexperiments land2 by model output also exhibited the classic behavior of an “after-
performing a multi-linear regression of movement error Ogffect” (Shadmehr and Mussa-lvaldi 1994) when the catch trial
previous movement errors, previous perturbations and conGiyiss introduced at trial number 75. Furthermore, this model was
rent perturbations (Table 1). The ability of this model to predigfiso aple to account for the observations of Thoroughman and
movement error in the last 100 movements in each experimefhagmehr (2000) that a single catch trial can transiently de-
tal session was evaluated to determine how well the modghde the adapted state generated in response to a consistent
Woulc_J _generallze be_y_ond the_data set used to determine moﬁ@‘turbing field. Consequently, this very simple model of mo-
coefficients. The ability of this model to predict performancgy adaptation succinctly captures the fundamental behavioral

for greatly differing perturbations sequences (i.e., unimodal sharacteristics exhibited in both the present experiment and in
bimodal distribution) was also evaluated. Model performangggre traditional experiments of motor adaptation.

was quantified using the variance accounted for (VE§; 4.
The percentage of VAF by this model from the unimod
experiment was 79% for the subject shown in Fig.abhd 71+
3% (mean=* 1 SE) for all four subjects. The percentage of To investigate how each term of the model related to ob-
VAF by this model from the bimodal experiment was 86% foserved behaviors, the output of the model in response to the
the subject shown in Fig.Band 84 = 2% for all eight same step input (Fig.Aj was analyzed for various combina-
subjects. Thus a model incorporating limited explicit memonyons of model parameters (FigBY. A model that does not rely

of subject performance and perturbation magnitudes can poe-prior experience, and thus has no memory (ags b, =

dict movement errors with a high degree of fidelity. Thi®; trace 1), can only respond to the current perturbation and
strongly suggests that motor adaptation is a continuousbils to adapt. This is the response one would expect if subjects
evolving process whereby the average field in a sequenceware only co-contracting their limb in response to the pertur-

"’}hterpretation of model coefficients

TABLE 1. Equation 5 regression coefficients and goodness-of-fit measures for both the unimodal and bimodal experiments

Subject n a, by b, VAF r
Ul 0.29 —2.43 1.94 0.62 0.79
uz2 0.43 —3.99 3.73 0.73 0.85
u3 0.45 —5.37 4.66 0.77 0.88
u4 0.09 —3.84 2.85 0.70 0.84
B1 0.53 —4.29 2.23 0.87 0.93
B2 0.52 —2.55 2.62 0.80 0.89
B3 0.39 —4.32 3.47 0.86 0.93
B4 0.49 —4.40 3.35 0.86 0.93
B5 0.29 -3.27 1.94 0.81 0.90
B6 0.52 —-3.25 2.68 0.77 0.88
B7 0.53 —3.92 3.27 0.86 0.93
B8 0.62 —5.59 4.57 0.92 0.96
u 4 0.31+0.11 —3.91+ 0.60 3.29+ 0.58 0.71+ 0.03 0.84+ 0.02
B 8 0.49% 0.04 —3.95+0.33 3.02+ 0.29 0.84x 0.02 0.92= 0.01

U and B values are means SE.
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A DISCUSSION
60 . . . - .
The present experiments investigated the ability of unim-
20l paired humans to adapt to a viscous, perpendicular, force-field
environment having force-field gains that were unpredictable
T 20 (and uncorrelated) from trial to trial. Experiments were de-
£ signed to determine if subjects adapted to the mean force field
S o gain, the most likely field, or whether adaptation would depend
g on other features of the perturbation sequence’s probability
g -20¢ density function. Correlation analyses were performed to de-
2 termine how much motor performance on any given trial was
= 401 correlated with performance on previous trials. It was found
that1) subjects adapted their motor behavior in response to the
60y ] random sequence of force field gai@¥ subjects compensated
s , , ‘ , ; . ;
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IO 4 \'s 7
B
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20 h \ V
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s
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: /(N | | :
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FIG. 6. Within-subject comparison of predicted (ARX modgt}. 5 move- \p""
ment errors with actual movement errors during the final 100 movements of the a =-0381,b =-391,b =329
experiment. Model parameters were evaluated from the 1st block of 100 trials. 3 v v .
A: prediction of performance for a typical subject in the unimodal perturbation
sequence. The dark line represents actual subject performance, while the thin a, =-0.62,b =-8.91,b =329
line represents the model prediction. The model accounted for 79% of the data 6 W
variance.B: prediction of subject performance in the bimodal perturbation
sequence (same line types asAin The model accounted for 89% of the data 4
variance.
bations. Increased co-contraction might decrease the magni- a,=1.10,b,=-3.91,b, =3.29
tude of theb, term, but unless the limb stiffness became
exceedingly large, a substantial residual offset would remain. ‘
The amount of residual steady-state error in the adaptive re- 0 75
sponse is determined by the relative magnitudels,aindb;,. Trial Number
Whenb, = —b, (trace 2), then the residual steady-state errorrc. 7. Step response analysis of a family of autoregressive models based

is eliminated. On the other hand, when the autoregressive temmfq. 5 The coefficients for each model are described above the correspond-
in the model is removeda{ = O; trace 3), the dynamics ing response curves, top input sequence corresponding to a step increase in

. S . . the strength of force-field perturbation, similar to the perturbations traditionally
associated with initial exposure to the perturbation are eli d to study motor adaptation. Note that a “catch trial” (impulse) was

nated while the steady-state error is reduced relative to the fdliuded near the end of the sequence to allow a direct comparison of the
model (Fig. A). If this autoregressive term is instead doubledhodel's response to catch trial behavior described in the #xiottom
(trace 4), the initial transients are extended and the steady-sta$gonse of a model derived from the average coefficients of the 4 subjects
error is increased. Changing the sigra@(traces 5 and 6) does participating in the unlmodal experiment. Note that the .model_ exhlblts a

. . steady-state error as trial numbers become large as did subjects in both
not alter the time course of adaptation but causes the modelSerimentss: 1: step response of a model with no memory: the response on
response to oscillate within the envelope defined in FigA 7, any given trial is only dependent on the current perturbation magnitude; 2:
(botton) and B (trace 4), respectively. Note, however, thatesponse of a model that precisely compensates for the most recent perturba-

Changing the sign Cﬁl does in fact reduce (but not eIiminate)“(?” Withouteitheratt_enuation or amplificatidm; = b,. 3: response ofa model
h no autoregressive terna; = 0. 4: response of a model with its autore

the Steady'State grror. Fma”y’ not all ch0|ces of paramet%Y’ ssive term doubled; 5: model response when the sign of the autoregressive
yield ) stable learning. Setting; > 1.0 yields an unstable term has been inverted; 6: model response when the autoregressive term has
algorithm that never adapts (trace 7). been both inverted and doubled. 7: response of an unstable mpdelL.0.
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for the approximate mean field of the stochastic sequence, rally on information about past movement performance and/or
the most likely field, an@®) subjects compensated using mempast perturbations derived from a variety of sensory sources
ories of only the most recent perturbations and the most recémig., muscle spindles, Golgi tendon organs, slowly adapting

performances. hand mechanoreceptors, vision, etc.). A general form of this
model, one that depends only on information regarding move-
What did subjects adapt to? ment errors and perturbation amplitudé&s)( 3 was examined

in the present experiment. One important aspect of this model

Subjects experienced perturbing forces that were alwagsthat information about experiences in the distant past is
directed toward their left. If no adaptation had occurred, thestained implicitly in the autoregressive terms (i.e.Eij. 3
all movement errors would likewise have been directed towagdntains at least one nonzeapterm).
the left. However, for field strengths 6f10 Ns/m, hand-path  The correlation analyses (Fig. 5) demonstrated that move-
deviations were made consistently toward the right in bothent error on a given tridlwas well predicted from the field
experiments (Figs. 8 and 4A). The presence of these oppostrength on that trialg) and from the field strengtHB( ;) and
sitely directed errors (i.e., to the right) indicates that subjeatsovement error¢_;) exhibited on the previous triakEg. 5.
were directly opposing forces they anticipated encounterivghy do subjects compensate for previous movement errors
and precludes the possibility that they were merely stiffeninghen the step response analysis suggests that learning would
the arm around some reference trajectory (Conditt et al. 199%&; more rapid and effective if those errors were disregarded
Flash 1987; Shadmehr and Mussa-lvaldi 1994). Furthermatkogether (i.e., seq; = 0 in Eq. 5 and the most recent
movements made in stronger-than-average force fields weeaturbation was canceled exactly (i.e.,lsgt= —by in Eq. 5;
undercompensated, whereas movements made in weaker-tirg- 7B, trace 2)? Are there unavoidable history dependencies
average force fields were overcompensated, suggesting fhathe proprioceptive and/or visual sensory pathways that con-
subjects were compensating approximately for the mean pstrain the motor learning mechanisms in their “choice” of
turbing force field in both experiments. This finding was coreompensatory strategies? It has been suggested that cancella-
firmed by linear regression analysis (Figg &nd £). tion of prior movement errors is important to motor adaptation

Learning rates in the present study (Fig€. &nd &) were (e.g., Flanagan and Rao 1995; Scheidt et al. 2000; Wolpert et
slowerthan rates reported for compensation of inertial loads. 1995).Equation 5suggests that compensating for the most
(within 1 trial) (Bock 1993) but were substantiafigsterthan recent movement err@xactly(i.e.,a;, = —1 in Eqg. 5 would
learning rates reported for consistent (but geometrically corne a counter-productive strategy sirteg. 5becomes unstable
plex) viscous environments when subjects were required wden|a,| = 1. This can be seen by examining the stability of
reach in several different directions (more than 100 trial§q. 5in the complexz-domain (Oppenheim and Schafer 1989).
(Bhushan and Shadmehr 1999). Remarkably, the learning rarée z transform ofEq. 5is
observed irexperiment were almost identical to the rates at
which subjects regained adaptation to a predictable perturbing
environment after a single “catch trial” in which the perturbin% , . .
environment was unexpectedly removed3( trials) (Thor- onsequently, the model's transfer functidl(z) is
oughman and Shadmehr 2000). Clearly, subjects adapted to E@ (by+bz?Y

these stochastic environments. H@ = B2 (l—az) )

E(2) = &,z 'E(2) + byB(2) + b,z 'B(2) (6)

) _ _ H(2) has a zero az = —Db,/b, (see Fig. B, trace 2) and a
Adaptation modeled as an autoregressive process with  gingle, real pole situated at= a,. The location of the zero in

external input (ARX process) the unimodal and bimodal experiments was not significantly
Although the linear regression results demonstrated t {ferent.at theP < 0.05 level P.: 0.39; 2-samp!eHest), and
subjects compensated for the approximate mean perturbatigf /0cation of the system pole in the two experiments was also
strength in both force-field environments, they did not suggdi®t Significantly different® = 0.13). Therefore to the extent
howthe central nervous system accomplished this adaptatigift this linear model captures the mechanisms of adaptation,
Mathematically, the mean perturbation magnitude is defined'§§ conclude that the process of adaptation is not sensitive to
the sum of the individual magnitudes divided by the number gj€ details of the distribution of the perturbing forces (e.g.,
perturbations. Since subjects had no way of knowing all of yifgode, skewness, e'tc.),'bult .only to its mean. The location of the
perturbation magnitudes until the experiment was completed?f0 @tz = —by/b, is significant because in the steady state
was not possible for them to directly compute the mean fieflt€-+ Wherz = 1) the transfer function is minimized whég =
strength. Subjects could have evaluated a “running average” ofe- Furthermore, for any linear system to be stable, all the
all trials they experienced so far. However, this strategy woulf!€S Of its transfer function must lie within the unit circle
require subjects to retain either explicit working memonalf defined in the complez plane (i.e. |7 < 1) (Oppenheim and
previously encountered perturbations or explicit memory of tlEchafer 1989). Therefofe,| < 1 must be satisfied fdg. 5 D
average of all previous perturbations along with a running tot3¢ Stable. Perfect cancellation of the most recent movement
of the number of previous perturbations. In either case, tggor (i-e..a, = 1) would cause the motor adaptation process to
relative importance of the most recent perturbation wouRfcOmMe unstable (e.g., Figytrace 7).
decrease linearly as a function of the number of perturbatio
A less demanding alternative would be for subjects to re
only on explicit information regarding only recent experiences. Since the relationship between movement error and pertur-
Motor performance (and consequently motor adaptation) mbgtion gain was reasonably well fit by a straight line (Fids. 3

{plicit representation of the internal model
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and &), the ARX model of subject performancEd. 5 was ing the most recent perturbation strength would be to do so
rearranged to yield an expression for the internal model of thadirectly and recursively, using only the most recent move-
perturbing environment. Specifically, movement error genement error to update the previous estimation of the perturbing
ated on triali was regarded as a function of the mismatcfield. In this caseEq. 10can be reformulated

between the actual perturbation experienced on that trial and

the expected (or adapted) perturbation magnitede: f(B; — Bagapte = ~ (2u/Do)€i-1 = (01/b0)Bucapreg , an
Badapted- Figures E and & demonstrate that this relationship  Here, movement errors drive the formation of the internal
was reasonably described by a linear function model of the perturbations. Substituting thezansform ofEq.
€ = K(B: — Bacapte) @ 1linto the z transform of Eq. 9B for B,yapieq(2) Yields a
transfer function that is identical in structure Em. 7 except
Re-arranging=g. 5into the form ofEq. 8yields that the algorithm’s single pole location is shiftedzte- a, —
a b (bs/bg). The coefficient values that ensure stability of the-sys
6= bO(B‘ +Elei_j +ElBi_k> 9A) tem are thereforefa, — (by/by)| < 1. UsingEq. 11and the
0 0 modifiedEq. 9Bto fit subject U2 movement error data yields
= Do(Bi — Bagaptep (9B) the coefficientsia, = —0.34,b, = —4.2, b, = 4.0. The
effective pole location for this system was= 0.62 (compare
where to Fig. 7B, trace 4). Since recursive estimationRyf, via Eq.
Bacapeg = — (@/bo)ér_s — (B/bo)B_y. @0y 11does not alter the transfer function structurefaf. 7,the

correlation analyses of Fig. 5 cannot distinguish between re-
Equation 10provides a very simple representation of theursive estimation 0fB,y.peq (EQ. 11 and estimation of
subject’s prediction of the perturbation magnitude on trial B, .4 Via proprioception ofB,; (Eg. 10. Consequently,
based solely on explicit information about the error and pehile force feedback gain from Golgi tendon organs is likely to
turbation magnitude on the most recent trial. However, evéie quite low (cf. Houk and Rymer 1981), such information is
this simple representation faithfully reproduced subjects’ baet necessary to construct an internal model of the perturbing
havior in the present experiment (Fig. 6). It is worth noting th@drce field environments.
parameters estimated from the first 100 trials adequately ac-
counted for the time series of errors up to 300 t_rials followin omparison of the simple autoregressive model with
parameter estimation. Thus the adaptive behaviors observed - native learning strategies
both the unimodal and bimodal experiments (Figs. 3 and S
were a consequence of the dynamics of a quasi-stationaryf movement error is linearly related to the perturbing field
process with very limited memory. Motor performance wouldmplitude, ¢ = k(B; — Bygaped then the optimal internal
be optimized by tuning the coefficierds, by, andb,. Both the model in terms of least square error (i.e., Bgy.yeqthat
rate of adaptation and the steady-state error can be alteredvibgimizes the sum o€?) is given by the mean f|elcf
appropriate modification of these coefficients (Fig. 7). -

B;

=1

1
71 i (12)

opumal

How do the motor adaptation mechanisms estimate the most !

recent movement error and perturbation strength? In the present study, movement errors were linearly related
perturbation amplitude (Figs.E3and £). This finding
pports the empirical claim that subjects adapted their reach-
B..,. Movement error is likely to be sensed both visually (e. g|ng movements so as to minimize deviations from a rectilinear
Wolpert et al. 1995) and proprioceptively (Dizio and Lacknerl’ath (Shadmehr and Mussa-Ivaldi 1994). One plausible alter-
2000; Shadmehr and Mussa-Ivaldi 1994). The current expeftive (o the learning strategy describedty. Swould be for
ments were not designed to evaluate the relative contributiotf2I€Cts to “explicitly” learn the mean. In this cagsy. 12is
of different feedback modalities to motor adaptation but rathgfPstituted intdq. Sfor B, while the dependence on previous
to explore how the neural mechanisms involved in motdfovement errors (the,, term) is dropped
adaptation use information from previous movements (how- c —b.B +bB . 3)
. . . . i (e '1 Poptimal

ever that information is sensed) to modify motor commands on
subsequent movements. Both visual and proprioceptive fe&tjuation 13was fit to subject UZs initial perturbation and
back appear to be important (Conditt et al. 1997b), althoughnitovement error data set (1st 100 movements). The model’s
is not yet clear how this feedback information is combined iperformance was then evaluated in the final 100 movements of
driving motor adaptation. the experiment (Fig. &). This algorithm performed respect-

There are at least two ways the CNS could estimate the mabty when perfect memory of all perturbations encountered
recent perturbation strength in keeping with the spirEqf 10. was available (VAF= 70%). This algorithm also quickly
The first strategy would be to estimate the field strength dienverged to the (ideally) linear relationship between pertur-
rectly using sensory organs sensitive to the kinetic demandsbation gain and movement error (FigB)8 However, this
the task (e.g., Golgi tendon organs, hand mechanoreceptonsdel failed to exhibit the significant lag 1 correlations be-
and indirectly, muscle spindle receptors since they are couplegeen movement error and perturbation amplitude observed
to the perturbation through limb tissues with finite impedancegxperimentally (compare Fig.G8to Fig. 54). The absence of
In this caseB;,; would be “measured” directly anfiq. 10 these lag 1 correlations arises from the fact that when all
would be implemented as written. The second way of estimatrevious movements are considered explicitly, the contribution

Constructing the internal representation of the perturbﬁ%
field strength vieEq. 5requwes accurate estimation €f; and
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of any one individual perturbation to the internal model of theehen the underlying distribution oB; is stationary. In the
mean field becomes vanishingly small after only a few trialsonstationary case (such as the step input of F&), the
Therefore the simple adaptive mechanismiaf. 10 permits model of Eq. 12would respond very slowly since the incre-
subjects to achieve near optimal performance (i.e., approriental contribution from each subsequent trial decreases pro-
mately minimizing squared errors) while maintaining compugressively as the number of trials increases. Consequently,
tational efficiency since the autoregressikZg. 10 approxi- adaptation in the sense Bfy. 5strikes a desirable compromise
mates the ideal average Bfy. 12with a very limited number between decreasing movement errors in a stationary but po-
of memory elements. (The autoregressive terntin 10re- tentially unpredictable environment while allowing the motor
tains indirect and exponentially weighted memory of all pasystem to respond rapidly and appropriately to long-term
perturbations due to the nested dependencg 06n previous changes in the perturbing environment (Figy).7

errors.) Note also thdtqg. 12defines optimal performance only A second alternative learning strategy describes what could
be called “careless learning” and was motivated in part by the

60 " , : ! ) ;
observation that subjects never made ideally straight move-
A 40 1 ments and almost always had peak hand deviations exceeding
_ ~1 cm (Figs. & and £). Perhaps subjects considered move-
E 20 ments with such small errors “good enough” for the specified
- task? This form of learning is careless in the sense that the
s of learner does not attend to small movement errors. The internal
i representation of the perturbation in a careless learning model
€20} would be updated only when the learner is “surprised” (i.e.,
E when the movement errors experienced on a given trial exceed
3 -40 a minimum threshold valu&,cshoid- An attention model that
= describes how well movement errors are attended to is
-60f
U(ei) = U(EI - ethresholt) (14)
-80, 20 20 P 80 100 Whereu(") is the unit step function. The update rule for the
Trial Number internal model then becomes
100 ; , ; ; v . T A A —b, a
Badapleq: Badaple;i 1 + U(ei) -— -1 Badapteu . €1 (15)
B 8of 1 by bo
_ oy Note that ife;esnoig= 0, then the !deate rule &fq. 1_5_simply
g 40 reverts to that oEq. 11.The selection o€, cshoisSPECIfies how
= a0l “attentive” the adaptation process is to small movement errors.
s Settingeresnoidl@rge implies that the internal representation of
5 0 the perturbation will adapt only on “exceptional” trials where
£ 20 1 large movement errors indicate that the model's prediction of
E -40r Zero Crossing at 14.4 the most recent perturbation was grossly inaccurate.
" 1 1 p— 1
3 _eol f | The attention model oEq. 14 with €40sh0q = 5 MM is
= f shown in Fig. @\. The careless learning algorithiad. 15 was
801 y ] fit to subject UZs initial movement error data (1st 100 move-
0 . y .
~100r 1 2810 Crossing at 14.6 1 ments). The model’'s performance was then evaluated in the
-120 s s ‘ s . final 100 movements (Fig.B. Even though the algorithm
- 0 10 B, [ﬂlss/m] 202 80 % neglected the smallest movement errors, overall performance
: was respectable when driven by the unimodal perturbation
04 . . sequence (VA= 64%). However, when the same model was
C 02 FIG. 8. Simulation results of a learning algorithm that accumulates an
explicit representation of the mean perturbing fiefd)(12. A: model perfor-
L 5 mance in the unimodal perturbation sequence. The thick line represents subject
2 performance while the thin line represents the model prediction. The model
S accounted for 70% of the data varianBescatter plot of algorithm predictions
g -02 of movement errors (triangles) and subject performance (filled dots) vs. per-
c turbation amplitude in the unimodal sequence of perturbations. Thick lines
%_0‘4 represent the linear regressions fitting the dependence of algorithm-predicted
° movement errors and subject-generated movement errors on perturbation am-
b ost | plitude (0 crossings of 14.4 and 14.6 Ns/m, respectiv€lygross-correlation
o~ magnitude between simulated movement error and perturbation gain for the
learning algorithm that accumulates an explicit representation of the mean
-0.8 1 perturbing field. The two horizontal lines correspond to the 95% confidence
interval bounds (i.e., thealimits) on the correlation magnitudes. Compen-
sation for the explicit average perturbation did not predict the significant lag-1

-10 0 10 20 30 40 50 correlation between movement errors and perturbation gain seen in the sub-
Trial Lag Number jects’ data (e.g., Fig./).
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driven by the bi-modal sequence, the algorithm’s performanBelation to studies requiring adaptation to consistent

suffered (Fig. €). Movement errors were negatively biasedperturbation sequences

indicating an inability of the model to compensate for the

sequence of perturbations as well as the subject did. WithA recent study of reaching movements by Thoroughman and
€nreshoid= D MM, the careless learning algorithm compensat&thadmehr (2000) examined movement errors generated by
only for the approximate mean of the minor peak in thsubjects exposed to predictable perturbing environments with
bimodal distribution (4.9 Ns/m, Fig.®. Consequently, a periodic “catch trials” where the predictable perturbation was
learning algorithm that performs well in the unimodal sequencmexpectedly removed. Movement errors generated in the con-
may perform poorly in the bimodal sequence unless movemetant-gain curl-field just after exposure to a catch trial were
errors are attended to carefully. The residual curvature chsbstantially larger than errors generated just prior to the catch
served while reaching in both stochastic perturbation s#al. This increase in error was attributed to an “unlearning” of
quences was likely due to biomechanical constraints andtbe internal model of the environment. This increase in error
information processing within the motor control systems arttecayed on subsequent movements to the same target and was

not due to inattention to very small movement errors. undetectable by about the third trial following a catch trial.
60— - , ‘ |
A B :
40f 1
£
-
_ 5 ©
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FIG. 9. Simulation results of a learning algorithm that updates its internal model when the field strength experienced on a given
trial deviates from the predicted field by more than some minimum vatge 15. A: the attention model(e;) for a learning
algorithm that attends only to movement errors that exceeged,,q = 5 mm. B: comparison of algorithm and subject
performance in the unimodal sequence of perturbations. The thick line represents actual subject performance while the thin line
represents the model’s prediction of subject performance. The model accounted for 64% of the data Varizoroearison of
algorithm and subject performance in the bimodal perturbation sequence. Line types arB.d3: iscatter plot of algorithm
predictions of movement errors (triangles) and subject performance (filled dots) vs. perturbation amplitude in the bimodal sequence.
The thick lines represent the linear regressions of algorithm-predicted movement errors on perturbation amplitude (left-most
diagonal line) and that of subject-generated movement errors on perturbation amplitude (right-most diagonal line).
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This decay rate was comparable to the rate of a_daptati@;pNDlTT MA, GaNpoLFo F, AND Mussa-lvaLpl FA. The motor system does
observed irexperiment Trom the present study even though not learn the dynamics of the arm by rote memorization of past experience.

. . . J Neurophysiol78: 554-560, 1997a.
the perturbatlon sequence usedelxpe”mem Iwas random. ConpITT MA, ScHEIDT RA, AND MussalvaLbl FA. Visual influence on

The decay rates obtained experimentally were comparable tRaring arm dynamicsSoc Neurosci Abst23: 202, 1997b.
the rate predicted biq. 5(Fig. 7A). Thoroughman and Shad-Dizio P anb Lackner JR. Motor adaptation to Coriolis force perturbations of
mehr fit a system of equations to their movement error data thafteaching movements: endpoint but not trajectory adaptation transfers to the

: : : . .nonexposed arml Neurophysiol74: 1787-1792, 1995.
captured this experimentally observed unlearning behav'%fbo P anD LacknER JR. Congenitally blind individuals rapidly adapt to

FOHOWing arearrangement of terms and SUb$titUtion of indices cqyiglis force perturbations of their reaching movemedt$Neurophysiol

it can be shown that their system of equations can be repres4: 2175-2180, 2000.

sented in the form oEq. 5. The similarity in experimental FLanacan JRAnD Rao AK. Trajectory adaptation to a nonlinear visuomotor
observations and the successes in equivalent modeling tecq_ansformatlon: Evidence of motion planning in visually perceived space.

. europhysiol74: 2174-2178, 1995.
niques between the present study and that of Thoroughman #1184 T. The control of hand equilibrium trajectories in multi-joint arm

Shadmehr (2000) suggest that the processes involved in adagtovementsBiol Cybern57: 257274, 1987.
ing to consistent perturbing environments are the same as thGsepsopy SJano WoLperT DM. Temporal and amplitude generalization in

involved in adapting to stochastic perturbing environments, motor learningJ Neurophysiolr9: 1825-1838, 1998.

; ; ; PPEE R. Goal-directed arm movements. Ill. Feedback and adaptation in
In conclusion, a sequence of perpendlcular VISCous 1Ec)"Eéesponse to inertial perturbationd. Electromyogr Kinesiol3: 112-122,

fields with stochastically varying gains triggered an adaptive;ggs.

process that compensated for #ygoroximatemean field gain Helo R ano FrReepman SJ. Plasticity in human sensorimotor conti®tience
from that sequence. Furthermore the force-field gain that subl42: 455-462, 1963. o o

jects adapted to was not the most frequently experienced ga MHOLTZ HVV. Treatise on physiological optic®ptical Soc An3: 601-

. . s i 02, 1925.
nor was adaptatlon dependent on the parncular dIStI‘Ibutlon,Q uk JC aND RymER WZ. Neural control of muscle length and tension. In:

perturbations.. AlthOUQh adaptation to the mean field gaiNHandbook of Physiology. The Nervous System. Motor CorBaltimore,
would be optimal in the sense that squared movement errokD: Am Physiol. Soc., 1981, sect. 1, vol. II, p. 257-323.
would be minimized in the steady state, this strategy is COIRBAKAUER JW, GHILARDI M-F, aAnD GHEZ C. Independent learning of internal

putationally costly and does not allow sufficient flexibility to Toozdeelslégrl k'lr‘;g”;at'c and dynamic control of reachiat Neurosci2:

aCC_OmmOdate efficient learning of nonstationary environmentScwer JrR ano Dizio P. Rapid adaptation to Coriolis force perturbations of
A simple model of motor performance that depended only onarm trajectory.J Neurophysiol72: 299313, 1994.
movement error and perturbation gain from the previous trigjunc L. System Identification. Theory for the Us&mnglewood Cliffs, NJ:

Eq. hiev ntial r ion in movement error Prentice Hall, 1999.
( d 3 achieved substantial reductio ovement e OMARMARELIS PZ anD MARMARELIS VZ. Analysis of Physiological Systems. The

while alloyvlng a rgpml_ an_d appropriate response to Iong-te(m\,\,hite_Noise ApproactNew York: Plenum, 1978.

changes in the distribution of perturbations (Fig. 7). ThiSppentem AV anp ScHarer RW. Discrete-Time Signal Processingngle-
simple model predicted subject performance wit84% vari-  wood Cliffs, NJ: Prentice Hall, 1989.

ance accounted for (VAF). These findings support the hypothszssWH, FLANNERY BP, TEukoLsky SA, AND VETTERLING WT. Numerical

esis that the neural structures modified as a result of motoEfgggeiégg;The Art of Scientific Computiggw York: Cambridge Univ.

adaptation do not explicitly retain memories of performanceg, et RA ano MussalvaLor FA. Time series analysis of motor adaptation.
or perturbations beyond one or two trials in the past. Soc Neurosci Abst25: 2177, 1999.
ScHEIDT RA, REINKENSMEYER DJ, ConDITT MA, RYMER WZ, AND Mussa-

. . . ! IvaLbl FA. Persistence of motor adaptation during constrained, multi-joint,
We extend special thanks to Dr. Chris Raasch for creating Ag. 1 arm movements] NeurophysioB4: 853862, 2000.

This work was supported by National Institutes of Health Grants NS-356§HE|DT RA anp Rvwer WZ. Control strategies for the transition from

and P50MH-48185. S - L ) ; ) ;
multi-joint to single-joint arm movements studied using a simple mechanical
constraint.J NeurophysioB3: 1-12, 2000.
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