Unsupervised Segmentation/Supervised
Segmentation



Unsupervised Segmentation and
Grouping

Motivation: Many computer
vision problems would be easy,
except for background
interference.

Unsupervised Segmentation: no
training data

Use: Obtain a compact
representation from an
image/motion sequence/set of
tokens

Should support application

Broad theory is absent at
present

Grouping (or clustering)

— collect together tokens that
“belong together”

Fitting
— associate a model with tokens
— 1ssues
e which model?

e which token goes to which
element?

* how many elements in the
model?



General 1deas

Features (tokens)

— whatever we need to group
(pixels, points, surface
elements, etc., etc.)

top down segmentation (model
based)

— features belong together
because they lie on the same
object.

— Supervised segmentation

bottom up segmentation (image
based)

— features belong together
because they are locally
coherent

— Unsupervised segmentation

These two are not mutually
exclusive
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Why do these features belong together?






Basic ideas of grouping in humans

e Figure-ground discrimination * Gestalt properties
— grouping can be seen in terms — elements in a collection of
of allocating some elements to elements can have properties
a figure, some to ground that result from relationships
— impoverished theory (Muller-Lyer effect)

e gestaltqualitat

— A series of factors affect
whether elements should be
grouped together

e Gestalt factors






Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region



Continuity
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Are Gestalt laws the result of observed
regularity in scenes?

(&) {L)

Fig. 1. (&) A 1D Markov random fiaid where the nodee represant random variables for positions of contaur points. (B) Node A is spatially adjacent to
paint B, but it is far away from B In the circular neighborhaod of (a).
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Collect statistics on local curvature and
adjacency for natural contours.
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Fig. 5. (a) The histagrams of xis) averaged over 22 animate cbjects at scale O {solid curve), scala 1 {dashad curve), and scalo 2 (dash-dotted curve),
the horizontal axis Is six) with unit Jz — —5=. (b) The loganthm of curves in (a).



Sampled boundaries from learning probability model.
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Fig. 11. Six of the synthesized shapes with curvalure histogram matched to animate shapes, jid = p'!. The histograms ot these synthesizod
shapas aro shown by the dashed corves In Fig. 12.



Technique: Shot Boundary Detection

Find the shots in a sequence of e Possible distances

video — frame differences

— shot boundaries usually result — histogram differences
in big differences between

_ — block comparisons
succeeding frames

— edge differences

Strategy: C.
Y . _ e Applications:

— compute interframe distances _ representation for movies, or

— declare a boundary where these video sequences

are big e find shot boundaries

e obtain “most
representative” frame

— supports search



Technique: Background Subtraction

If we know what the * Approach:

background looks like, it is easy — use a moving average to

to identify “interesting bits” estimate background image

Applications — subtract from current frame
— Person in an office — large absolute values are

— Tracking cars on a road interesting pixels

e trick: use morphological
operations to clean up
pixels

— surveillance












Segmentation as clustering

Cluster together (pixels, tokens,
etc.) that belong together
Agglomerative clustering

— attach closest to cluster it 1s
closest to

— repeat
Divisive clustering

— split cluster along best
boundary

— Repeat

Point-Cluster distance

— single-link clustering

— complete-link clustering
— group-average clustering
Dendrograms

— yield a picture of output as
clustering process continues
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K-Means

e Choose a fixed number of e Algorithm

clusters — fix cluster centers; allocate
points to closest cluster

— fix allocation; compute best
cluster centers

e Choose cluster centers and

point-cluster allocations to
minimize error e x could be any set of features

for which we can compute a

e can’t do this by search, because , ,
Y distance (careful about scaling)

there are too many possible
allocations.

2 > -l

i€clusters | j&elements of i'th cluster



Simple k-means algorithm

n sample feature vectors x,, X,, ..., X,

Assume they fall into k compact clusters, k < n.

Let m; be the mean of the vectors in cluster i.

Classify x in cluster i if || x - m; || is minimum of all the k distances.

This suggests the following procedure for finding the k means:
— Make initial guesses for the means m,, m,, ..., m,
— DO until no changes in any mean

classify the samples into clusters by assigning each point to the
closest mean

Fori=1k
Replace m; mean of all of points in cluster i
end
end DO



Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.




K-means using colour and
position, 20 segments




Graph theoretic clustering

e Represent tokens using a
weighted graph.
— affinity matrix
e Cut up this graph to get
subgraphs with strong interior
links



Clustering code

im=imread('squaresorig.jpg');
im2 = double(im(1:4:end,1:4:end,:));
Dm = size(im?2); Wl :
X =reshape(im2, [Dm(1)*Dm(2), 3]); e e
[IDX,C]=kmeans(X,6);

X2 =C(DX,:);

Clusterim = uint8(reshape(X2, [Dm(1), Dm(2), 3]));

image(Clusterim) \ g

20 40 =)

Assign mean color
To each cluster and display



Image Segmentation as Graph Partitioning










Boundaries of image regions defined by a
number of attributes

— Brightness/color

— Texture

— Motion

— Sterecoscopic depth

— Familiar configuration




Measuring Atfinity

Intensity
aff(x,y)= exp{—( %03)(\\1(30 - I(Y)Hz )}
Distance
aff (x, y) = exp{—( %02) (||x -y )}
Texture

aff (x,y) = exp{—<%0?>(uc(x) _ C(y)Hz)}

c(x) denotes a histogram,for instance



Scale affects affinity
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Eigenvectors and cuts

Simplest idea: we want a
vector a giving the association
between each element and a
cluster

We want elements within this

This is an eigenvalue problem -
choose the eigenvector of A
with largest eigenvalue

Maximize :
cluster to, on the whole, have - ¢ -
strong affinity with one another E=a ‘g/a + Ml -a a)
: 0
Let w,=aff(x;,x;) forpixelsx; & x; Qet: Z=
e  We could maximize da
T = ZWCZ — 2)\.@
E=a Wa
= Wa = Aa

But need the constraint



Example eigenvector
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More than two segments

 Many options
— Recursively split each side to get a tree, continuing till the
eigenvalues are too small
— Use the other eigenvectors



Normalized cuts

e Current criterion evaluates e Maximize
within cluster similarity, but not
across cluster difference Nassoc (A,B ) =

e Instead, we’d like to maximize
the within cluster similarity
compared to the across cluster
difference

e Write graph as V, one cluster as .
A and the other as B

cut(A,B) =

assoc(A,B) = E W (i,J)

i€A,jEB

(assoc(A, A)) s (assoc(B, B))
assoc(A,V) assoc(B,V)

1.e. construct A, B such that
their within cluster similarity is
high compared to their
association with the rest of the
graph



Normalized cuts

Write a vector y whose elements  This is hard to do, because y’s

are: values are quantized
l if item is in A,

-bifit’sin B
(b = fraction(in)/fraction(out))

Write the affinity matrix of the
graph as W, and the matrix which
has the row sums of W on its
diagonal as D, 1 is the vector with

all ones. .
y(D-W )y)
y' Dy

Criterion becomes

IIllIly (

and we have a constraint

y'D1=0



Normalized cuts

Instead, solve the generalized eigenvalue problem
maxy(yT(D — W)y) subject to (yTDy = 1)
which gives
(D-W)y=ADy

Now look for a quantization threshold that maximises the criterion ---
i.e all components of y above that threshold go to one,

all below go to -b



iven a partition of nodes of a graph, V. into two sets A and B, let @ be an N = |V/|
dimensional indicator vector, 2; = | if node i is in A, and —1 otherwise. Let d(i) =T ; w(ts J).
be the total connection from node 2 to all other nodes. With the definitions @ and d we can
rewrite Neut( A, B) as:

cut( A, B) cut( B, A)
assoc( A V) assoc(B.V)

Neut(A, B)

2 L0, <0) — Wi B
ZKB¢'>O d
Z(m.;<o.1: o0y WL

2135{0

Let D he an N x N dia,gona]. matrix with d on its diagonal. W be an N x N symmetrical

matrix with W(ij) = wy;. & ;-'}1?— and 1 be an N x 1 vector of all ones. Using the

+

2= are indicator vectors for x; > 0 and 2; < 0 respectively. we can rewrite

fact 142 and 1=

A[Ncut(@)] as

(1+@)"(D-Wili@) n (1-2&)"(D-Wi 1-&)
1°Dl (1i-11° D1
@T(D-wiz+ 17 m-wil) n 2(1=20 1" (D-W)@
ki-1" Dl ki—k)1 D1




h=

1emje®
Setting y = (1 +a&)— b1l —x).

Shi & Malik(1997) show:

o . y(D=W)
ming Ncut(@®) = 'm.m«yy 4 Dy LN
with the condition i i'tjl (= {l.—b} and y'TDl = (.
This 1s Equivalent to: 1 1 ) 1
D HD-WD%2=\z. D 2DD 2;-D 2WD 27 = Az
1 1
= ny_ I;-D WD 2z = Az
But solutions to above are solutions to:
1 1

D WD 2z = )z



Using Intensity

001 /"
Fig. 3. Subplot e /
(a) plots the £oooe
smallest L /
eigenvectors of **
the generalized AL
eigenvalue (a) (©)

system (11).
Subplots (b)-(i)
show the
eigenvectors
corresponding
the second ;
smallest to the "
ninth smallest
eigenvalues of
the system. The
eigenvectors
are reshaped to
be the size of
the image.

(d) €) (f)
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Figure from “Image and video segmentation: the normalised cut framework™,
by Shi and Malik, copyright IEEE, 1998



Ng,Jordan,Weiss, 2002

Given a set of points S = {31,... ,8,} in  that we want to cluster into k subsets:

1. Form the affinity matrix 4 € R™" defined by Ay = expl(—||s — 5|7 /207) if
i# jg a.lld. -A.'&' =,

2. Define D to be the diagonal matrix whose (4, ¢)-element is the sum of A's i-th
row, and comstruct the matrix L = D™12 Ap=1/2 1

3. Find zy,22,+.. » Zx, the k largest eigenvectors of L (chosen to be orthogonal
to each other in the case of repeated eigemvalues), and form the matrix X =
[£122 . .. 2] € R™™* by stacking the eigenvectors in columns,

4. Form the matrix Y ﬁ'oin Xﬁby renormalizing each of X's rows to have unit length
(i Yiy = Xgy (T, X)),

5. Treating each row of Y as a point in R*, cluster them into k clusters via K-means
or any other algorithm (that attempts to minimize distortion).

6. Finally, assign the original point s to cluster j if and only if row ¢ of the matrix
Y was assigned to cluster j.
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F igure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000



