Texture

- Key issue: representing texture
 - Texture based matching
 - little is known
 - Texture segmentation
 - key issue: representing texture
 - Texture synthesis
 - useful; also gives some insight into quality of representation
 - Shape from texture
 - cover superficially
Representing textures

- Textures are made up of quite stylised subelements, repeated in meaningful ways
- Representation:
 - find the subelements, and represent their statistics
- But what are the subelements, and how do we find them?
 - recall normalized correlation
 - find subelements by applying filters, looking at the magnitude of the response
- What filters?
 - experience suggests spots and oriented bars at a variety of different scales
 - details probably don’t matter
- What statistics?
 - within reason, the more the merrier.
 - At least, mean and standard deviation
 - better, various conditional histograms.
Gabor filters at different scales and spatial frequencies
top row shows anti-symmetric (or odd) filters, bottom row the symmetric (or even) filters.
bandpass filtered image
bandpassed representation
image histogram
Bandpass domain noise image and histogram
Noise-corrupted full-freq and bandpass images
The Gaussian pyramid

- Smooth with gaussians, because
 - a gaussian * gaussian = another gaussian
- Synthesis
 - smooth and sample
- Analysis
 - take the top image
- Gaussians are low pass filters, so repn is redundant
Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image. The original image, level 0, measures 257 by 257 pixels and each higher level array is roughly half the dimensions of its predecessor. Thus, level 5 measures just 9 by 9 pixels.
The computational advantage of pyramids

Gaussian Pyramid

\[g_0 = \text{IMAGE} \]

\[g_L = \text{REDUCE} [g_{L-1}] \]

Fig 1. A one-dimensional graphic representation of the process which generates a Gaussian pyramid. Each row of dots represents nodes within a level of the pyramid. The value of each node in the zero level is just the gray level of a corresponding image pixel. The value of each node in a high level is the weighted average of node values in the next lower level. Note that node spacing doubles from level to level, while the same weighting pattern or "generating kernel" is used to generate all levels.
Fig. 2. The equivalent weighting functions $h_l(x)$ for nodes in levels 1, 2, 3, and infinity of the Gaussian pyramid. Note that axis scales have been adjusted by factors of 2 to aid comparison. Here the parameter σ of the generating kernel is 0.4, and the resulting equivalent weighting functions closely resemble the Gaussian probability density functions.
Figure 4.2: An analysis/synthesis filter bank.
Figure 4.4: Octave band splitting produced by a four-level pyramid cascade of a two-band A/S system. The top picture represents the splitting of the two-band A/S system. Each successive picture shows the effect of re-applying the system to the lowpass subband (indicated in grey) of the previous picture. The bottom picture gives the final four-level partition of the frequency domain. All frequency axes cover the range from 0 to π.

The Laplacian Pyramid

<table>
<thead>
<tr>
<th>• Synthesis</th>
<th>• Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>– preserve difference between upsampled Gaussian pyramid level and Gaussian pyramid level</td>
<td>– reconstruct Gaussian pyramid, take top layer</td>
</tr>
<tr>
<td>– band pass filter - each level represents spatial frequencies (largely) unrepresented at other levels</td>
<td></td>
</tr>
</tbody>
</table>
Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - by clever filter design, we can simplify synthesis
 - this represents image information at a particular scale and orientation
Steerable Pyramids

http://www.cis.upenn.edu/~eero/steerpyr.html
Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Publicly Available Software Packages

- **Texture Analysis/Synthesis** - Matlab code is available for analyzing and synthesizing visual textures. [README](#) | [Contents](#) | [Change Log](#) | [Source code](#) (UNIX/PC, gzip'ed tar file)

- **matlabPyrTools** - Matlab source code for multi-scale image processing. Includes tools for building and manipulating Laplacian pyramids, QMF/Wavelets, and steerable pyramids. Data structures are compatible with the Matlab wavelet toolbox, but the convolution code (in C) is faster and has many boundary-handling options. [README](#) | [Contents](#) | [Modification list](#) | [UNIX/PC source](#) or Macintosh source.

- **The Steerable Pyramid** - an (approximately) translation- and rotation-invariant multi-scale image decomposition. MatLab (see above) and C implementations are available.

- **Computational Models of cortical neurons** - Macintosh program available.

- **EPIC** - Efficient Pyramid (Wavelet) Image Coder. C source code available.

- **OBVIUS [Object-Based Vision & Image Understanding System]:**
 - [README](#) / [Change Log](#) / [Doc (225k)](#) / [Source Code (2.25M)](#).

- **CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:**
 - [README](#) / [Change Log](#) / [Source Code (118k)](#).
Figure 4.3: A non-uniformly cascaded analysis/synthesis filter bank.
Laplacian Pyramid Layer

Analysis
synthesis
Final texture representation

- Form an oriented pyramid (or equivalent set of responses to filters at different scales and orientations).
- Square the output
- Take statistics of squared responses
 - e.g. mean of each filter output (are there lots of spots)
 - std of each filter output
 - Histogram of responses
 - mean of one scale conditioned on other scale having a particular range of values (e.g. are the spots in straight rows?)
Example application: CMU face detector
Texture synthesis

- Use image as a source of probability model
- Choose pixel values by matching neighbourhood, then filling in
- Matching process
 - look at pixel differences
 - count only synthesized pixels
Application to image compression

- (compression is about hiding differences from the true image where you can’t see them).
Bandwidth (transmission resources) for the components of the television signal

Understanding image perception allowed NTSC to add color to the black and white television signal (with some, but limited, incompatibility artifacts).

Figure 6.1
Contrast sensitivity threshold functions for static luminance gratings (Y) and isoluminance chromaticity gratings (R/Y,B/Y) averaged over seven observers.
RGB to Lab color space

\[
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix} =
\begin{bmatrix}
0.412453 & 0.357580 & 0.189423 \\
0.212671 & 0.715160 & 0.072169 \\
0.019334 & 0.119193 & 0.950227 \\
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B \\
\end{bmatrix}.
\]

CIE 1976 L*a*b* is based directly on CIE XYZ and is an attempt to linearize the perceptibility of color differences. The non-linear relations for L*, a*, and b* are intended to mimic the logarithmic response of the eye. Coloring information is referred to the color of the white point of the system, subscript n.

\[
L^* = \begin{cases}
116 \times (Y/Y_n)^{1/3} - 16 & \text{for } Y/Y_n > 0.008856 \\
903.3 \times Y/Y_n & \text{otherwise}
\end{cases}
\]

\[
a^* = 500 \times (f(X/X_n) - f(Y/Y_n))
\]

\[
b^* = 200 \times (f(Y/Y_n) - f(Z/Z_n))
\]

where \(f(t) = t^{1/3} \) for \(t > 0.008856 \)
\(f(t) = 7.787 \times t + 16/116 \) otherwise
Lab components

L
a
b
Blurring the L Lab component

original

processed
Blurring the b Lab component

original

processed
Figure 2. Example coefficient magnitudes of a wavelet decomposition. Shown are absolute values of subband coefficients in a 4-level separable wavelet decomposition of the "Einstein" image. Note that high-magnitude coefficients at adjacent scales tend to be located in the same spatial positions.
<table>
<thead>
<tr>
<th></th>
<th>Orig 256K (8 bpp)</th>
<th>16K (0.5 bpp)</th>
<th>4K (0.125 bpp)</th>
<th>2K (0.031 bpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>35.77 dB</td>
<td>30.03 dB</td>
<td>27.49 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Human face)</td>
<td>(Human face)</td>
<td>(Human face)</td>
<td>(Human face)</td>
</tr>
<tr>
<td></td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
</tr>
<tr>
<td>PSNR</td>
<td>24.92 dB</td>
<td>21.56 dB</td>
<td>20.60 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Human face)</td>
<td>(Human face)</td>
<td>(Human face)</td>
<td>(Human face)</td>
</tr>
<tr>
<td></td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
<td>(Mandrill)</td>
</tr>
</tbody>
</table>