Stereo Vision



Introduction

e (Given two (or more) 1images of an object,
reconstruct 3D geometry

— WITHOUT knowledge of relative camera locations, but
calibrated cameras

— With uncalibrated cameras

e STRATEGY:

— Find a set of point matches between images
— Use geometric constraints to infer camera geometry

— Triangulate points once relative camera locations are
known



Introduction

Set of 3D points

(b) Output 3D model
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Overview

Feature Matching
Image Matching
Geometric constraints

3D Reconstruction



Panoramas: Homography
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Select a set of relatively unique feature points



Panoramas: Homography




Panoramas: Homography







3D: Epipolar Geometry




3D: Epipolar Geometry
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3D: Epipolar Geometry
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3D: Epipolar Geometry







Camera Models (review)

* Pinhole camera mgdel
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Camera Models

R rotation
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World

T translation coordinates
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Camera Models
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e World to camera transform

Or...

Camera Models

i ~ K(RX 4+ t)

* Projection equation becomes

i ~ K Rt

e
1

~ K |R[t| X



Camera Models

K(RIt) 1s a 3x3 matrix...
...but special because R'R =1

Relax this constraint

i =PX

Where P is an arbitrary 3x4 matrix 1.e.

P11 P12 P13 Pl4
P21 P22 D23 P24

P31 P32 P33 P34

= N <




Relations between 1image
coordinates

Given coordinates 1in one 1image, and the transformation
between cameras T = [R t], what are the image coordinates
in the other camera’s 1image.




Backprojection to 3D

We now know x, x’, R, and ¢
Need X




Deﬁnitiops
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Essential Matrix: Relating
between 1mage coordinates

O%x OTx' 06‘

v Are Coplanar, so:
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% 07x'-(0%xx 0%0')=0

camera coordinate systems,
related by a rotation R and a translation T:

R
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The epipolar geometry
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The epipolar geometry

epipoles e,e’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

baseline

an epipolar plane = biane containing"'baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras




Example: motion parallel with image plane
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Example: forward motion




What does the Essential matrix do?

It transforms the image point to the normal to the epipolar line
in the other image

n=Ex

The normal defines a line 1n 1image 2:

!

=n-x =0

on epipolar line
nx, +n,x,+n,1=0
n

(y=mx+b)=b=-n,, m=-—L
n,



What 1f cameras are uncalibrated?

Fundamental Matrix

Choose world coordinates as Camera 1.

Then the extrinsic parameters for camera 2 are just R and t

However, intrinsic parameters for both cameras are unknown.

Let C, and C, denote the matrices of intrinsic parameters. Then the pixel

coordinates measured are not appropriate for the Essential matrix.

Correcting for this distortion creates a new matrix: the Fundamental Matrix.
X' =(C,x' X =Cx

measured measured

x')IE x=0= (C;x'measured)te (Cl_l‘xmeasured) =0

) Fx =0 Example

— s 0

('x measured measured

F =C;EC1_1 C= 0 —f-s




Computing the fundamental

Matrix

Computing : I Number of Correspondences Given perfect image points (no noise) in general
position. Each point correspondence generates one constraint on the fundamental matrix

Constraint for [ & ot 1] | j:: ;ﬁ ;Z

one point fr fs Fo

Each constraint can be rewritten as a dot product.
Stacking several of these results in:
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Geometry of Homogenous
Coordinates

Data as 3D homogenous vectors p;, = [x; y;, 1]’

In 3D, the set of points lies
close to a common plane

1.54

1

05l ax;,+by =c

a-x =c = llxll cos ¢

_?ecames
ax;+by.+cl1=0
ap;,=0







Enforce both constraints using
Lagrangian multipliers

* Proceeding with method of Lagrange multipliers,
define V'

The constraint,
this will be zero

want to minimise so long as [[x]| = 1
\ %
V= lgl]* + A1-[[x][*)

k

Lagrange multiplier

The function we



V= |le]]* + AC1- [|x[*)

) can be rewritten as

since

€

X

V=xTATAXx + A(1-x1x)

>=¢ele=x"ATAx and

2 =xTx



* Find critical points of V, 1e. where the derivative dV/dx 1s

ZC10

V=x"ATAx + A(1-x"x)
dV/dx =2ATAx - 2Ax =0

= ATAXx = AX

* This 1s the eigen equation!

« X must be an eigen vector of ATA

(so that dV/dx = 0) this 1s a necessary, but not
sufficient condition to minimise C.

* Which eigen vector to choose?

* Choose the eigen vector that minimises C.



Let’s substitute 1n for x an arbitrary unit eigen vector e,,.
C =l
— eIITATAeH
=e, (ATAe)
- ellTe}I A

=4,

This 1s minimised by choosing
X=e,

where e, 1s the eigen vector associated with the smallest
eigen value A,




Estimating Essential Matrix

Solution Form matrix A from point matches
e Eigenvector associated with the smallest eigenvalue of ATA

o if rank(A' A)<8 degenerate configuration .

A

Projection onto Essential Space

\ 4

(Project to Essential Manifold)
If the SVD of a matrix F € R3%3 is given by F = Udiag(o1,02,03)V"’
then the essential matrix £ which minimizes the
Frobenius distance ||E — F||]20 is given by E = Udiag(o,0,0)V7’
. —I—O'
witho = 21572



Stereo Reconstruction

It we know the
— fundamental matrix, and
— 1nternal camera parameters

We can solve for the
— external camera parameters, and
— determine 3D structure of a scene



> 8 Point matches




* This 1s called calibrated reconstruction,
since 1t requires the camera(s) be
internally calibrated.

e

camera calibration matrix C must be known.

* For example:

— Reconstructing the 3D structure of a scene from
multiple views.

— Determining structure from motion.



d.

Reconstruction Steps

[dentify a number of (at least 8) point correspondances.

Estimate the fundamental matrix using the normalised 8-
point algorithm.

Determine the external camera parameters (rotation and
translation from one camera to the other)

Calculate the essential matrix from the fundamental matrix and
the camera calibration matrices.

Extract the rotation and translation components from the
essential matrix.

Determine 3D point locations.



Determining Extrinsic Camera Parameters

« Want to determine rotation and translation from one
camera to the other.

e We know the camera matrices have the form

Why can we use the identity as the external parameters
for camera M1?

M C ] (_)’ Because we are only interested in the relative position
1= ¥ of the two cameras.

M,=C,R 1]

e First we undo the Intrinsic camera distortions by defining new
normalized cameras

M™™ =C~'M, and M)™ =C,"'M,

1



Determining Extrinsic Camera Parameters

e The normalized cameras contain unknown parameters

M =[1 6]
My =[R 1]

 However, those parameters can be extracted from the
Fundamental matrix

o 0 -t t,
F=CEG E=|t, O -t |R=tR
£ =CifC, o0




Extract t and R from the Essential
Matrix

How do we recover t and R? Answer: SVD of E
E=USV'
S diagonal
U,V  orthogonal and det() =1 (rotation)

R=UWV' or R=UW'V' f{=y.  or f=-u,
0 -1 0
W=l 0 0
0 0 1




SVD

* For an n X m matrix there exist unitary™* matrices U and V
such that

U=[u,|u,|...|u

V=1[v||v,|...]v,] «——n X n matrix

| «—— m X m matrix

s; 0 e 0
A = USV T, where S = [SO' 8] , S, = O 5:3 O
0 O S,

and 5,2 5,2 ...2 5,20,p =min{n,m}

*a real matrix U is unitary if U-l = UT




SVD

s. is the i singular value of A, the vectors u,

and v, are the left and right singular vectors
of A.

s is an eigenvalue of AA" or ATA,
u, is an eigen vector of AA! and

v, is an eigen vector of ATA.



SVD

* V=1[v,v,|...]v,]

* is a matrix of eigen vectors of ATA with
associated eigen values s2. The eigen
vector corresponding to the smallest eigen
value of ATAis v,

 Hence the non-zero x that minimises
Ax =0
ISX=V,
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Example: Least Square Line Fitting

Data scatter Data as 2D vectors
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Introducing Homogenous
Coordinates

Data as 3D homogenous vectors p;, = [x; y;, 1]’

In 3D, the set of points lies
Close to a common plane

1.54

1

05l ax;,+by =c

a-x =c = llxlll cos ¢

_?ecames
ax;+by.+cl1=0
ap;,=0
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[U,S,V] =svd(B)

>

[V,D]=eig(B)

Yields z-axis and

Complex eigenvalues
Representing the ambiguity
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Extract t and R from the Essential
Matrix

How do we recover t and R? Answer: SVD of E
E=USV'
S diagonal
U,V  orthogonal and det() =1 (rotation)

R=UWV' or R=UW'V' f{=y.  or f=-u,
0 -1 0
W=l 0 0
0 0 1




Reconstruction Ambiguity

So we have 4 possible combinations of
translations and rotations giving 4 possibilities for

M, orm=[R | {]

1. Myom=[UW'V'| ]
2. M, = [UWV'| 1]

3. Mo = [UW'V! | -f]
4. Mo = [UWV!| -f]




Which one 1s right?

* We can determine which of these 1s correct
by looking at their geometric interpretation.

7




Both Cameras must be facing the
same direction




Which one 1s right?

* The correct pair will have our data points i front
of both cameras.

 How do we choose the correct pair?

* Procedure:
— Take a test point from data
— Backproject to find 3D location
— Determine the depth of 3D point in both cameras

— Choose the camera pair that has a positive depth for
both cameras.



How do we backproject?

X' =(C,x' X

measured

=C\x

measured

Knowing C; allows us to determine the
undistorted 1mage points :

1 -1 _ -1
X = C2 X measured X = Cl xmeasured

Recalling the projection equations allows to
relate the world point and the 1mage points.

x'= Cgl'x'measured A= Cl_l'xmeasured
7'x'=C;'C,M)"™X z=C;'C,/[I10]X
Z'x'= My X zx =[110]X



Backprojection to 3D

We now know x, x’, R, and ¢
Need X




Solving...

zu. =m X,

l

(m' X u,=m'-X

X =3zv.=m! - X =+
[ ] 2 ] t t
(m3- X)v,=m,- X

t
| z=my" X,

(m’ X u,—m' - X, =0
(m5- X,)v;—my- X, =0

u,(my)—m,

_Vi(m;)_ m;



Solving...

* Similarly for the other camera

0 Cm)="ml]
i Where *m’; denotes the ith
row of the second
camera’s normalized

projection matrix.

2 2
v (Cmy)="m;

Combining 1 & 2:
u,(my) = m
v,(m3y)—m,

X. =0
2 ) i
u'( m;)— m1t

V' .(Cmy)="m)
It has a solvable form! Solve using minimum
AX, =0 eigenvalue-Eigenvector approach (e.g. Xi = Null(A))



Finishing up
* Now we have the 3D point Xi

* Determine the location of this point for all 4
possible camera configurations

* Next determine the depths of these points in
in each camera.



A little more Linear Algebra

* Given 2 simultaneous equations we can write them in
matrix form

ax+b,y+c=0
! L & Ax+ce=0
ax+b,y+c,=0

where a, b X c, 0
A= , X = , C= , 0=
da 9 b ) ‘, C7 O

P o
. —d . —d S — — p—

and the solution is X =—A"'¢



Interpretation

* We are asking for a single (x,y) point that

satisfies both line equations.

 Graphically this amounts to finding the
point that lies on both lines.

ax+b,y+c,=0

ax+tby+tc=0




Given n simultaneous equations in 2D
ax+by+c=0

ax+by+c,=0
& Ax+ce=0

anx T bny T Cn: 0 [~ 7 ] A7
a, b ¢, 0
a, b, X c, 0
A= L x=| |, e= , 0=
Y
_(I)I 17N _ _C’N _ hO_

For n>2 this 1s an over-constrained system. A-! does not exist.
There need not be an exact solution.

We want to find the 'best' solution.



 Graphically we want to find the point that is
closest to all n lines at once.

e Note that “closeness” means Euclidean distance for
(unweighted) least squares solutions.



What about when ¢ =07 Case: Ax =0, x#0

 Solve Ax =0, for non-zero X,
* Find the direction ot x that minimises AXx.

* In 2D this can be interpreted as finding the x that 1s most
perpendicular to all n lines (1e. most perpendicular to the
rows of A).

> X




Why does Ax = 0 represent a
normal constraint?

The equation of a (2D) line can be written
y=mx+b

= ax + by =-c \
=ax+by+c=0

[th)_c’]=0, Zz=[a b c]t, i=[x y l]t d
For dimension > 2, this is a hyperplane

Note x 1s only defined up to a scale
factor, because a' (M%) =0

Ma@'%) =0
a'x =0



Solution

* Choose x to be the eigen vector associated with
the smallest eigen value of ATA. ...Why is this?

» X




* Xx can only be determined to a scale.
* So, choose x to be a unit vector,

x| =1,

* Define € = AX,

« We want to find an x so that ||€|| is as small as
possible, and ||x|| = 1.

* We can achieve this by minimising the positive

cost function C = ||g|* using the method of
Lagrange Multipliers.



Backprojection to 3D

We now know x, x’, R, and ¢
Need X




What else can you do with these
methods? Synthes1ze NEW VIEWS

Image 1 Image 2 60 deg!

Avidan & Shashua, 1997



Faugeras and Robert, 1996




Undo Perspective Distortion (for

The ““transfer" image is the left
image projectively warped so
that points on the plane
containing the Chinese text are
mapped to their position in the
right image.

*The *"superimpose" image is a
superposition of the transfer
and right image. The planes
exactly coincide. However,
points off the plane (such as
the mug) do not coincide.

*This 1s an example of planar
projectively induced parallax.
Lines joining corresponding
points off the plane in the
““superimposed" image
intersect at the epipole.




Its all about point matches

& corect match
& false match F F
T focal length

f
e epipolar line &

left - . . - fight
Image interocular separation Image
plane plane



Point match ambiguity in human
perception

left: image right. image




Traditional Solutions

* Try out lots of possible point matches.

* Apply constraints to weed out the bad ones.



Find matches and apply epipolar
uniqueness constraint

ocafhooad et
//-ﬂ_ B
- o el mmm i
= Sl /ﬂ
pocench ) oot

Lefx kuage Wate kuage



Compute lots of possible matches

1) Compute “match strength”
2) Find matches with highest strength

Optimization problem with many possible solutions



Example
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Cyrlapean depth image A acan alang maw 185 (aanma the bulb)



* Cannot determine scale from image points either.

* Hence the scaling factor.

* LE.g. from image points alone we cannot determine
latitude and longitude or which way is north.
* Can only determine the location of the road up to a

Euchdean transformation from the world
coordinate frame.

* Combining the Euclidean transformation
and the scaling factor gives us a similarity

transform.
rotation
L translation
R t
T&'th
0 k scaling by &-!




Fundamental Matrix, why are 8
point matches enough?

wl [ fio fis|[w
V' =(fa [ fal|lv]= f=1
-1- _f31f32f33_-1-

Thus only 8 free parameters =>
Need 8 or more constraints.



Stereo Reconstruction Ambiguity

-

* Without knowledge of scene's placement with
respect to a 3D coordinate frame 1t 1s not possible
to determine the absolute position and orientation
of the scene from 2 (or any number of) views.



* What does this mean mathematically”

 (ven
~
— a set of 3D points X..
— two cameras P. P' and

-

— image points X, X'
* Remember these are related by:

~ -~
X, l’X,-

~

Ny M\
X' = P'X,

[



* Replacing
X, with Ty, X,

P.P' with PT. -1 P"l

v ]
sim sim

* Does not change the observed image points
x, =PX,
—PT  -IvT ¥
(P!sim ) lsimXI)
<! J— LA W
X', =P'\',

- (P'Tsim.l )(Tsim‘\\"'l)



Extrinsic Parameter ambiguity

* [fthe camera calibration matrces are not known
then the scene can only be constructed up to a
projective transformation of the actual structure.

* A projective transformation 1s a homogeneous
transformation of the form

~ ~
°\ new \

proj

’l

* where T, 1s any 4x4 mvertible matrix.



Projective

What does a projective
transformation look like?

There are a whole family
of these warped structures.

Projective transformations

— Map lines to lines

— Preserve intersection and
tangency if surfaces in
contact. -

Sstructure

True structure

Projective
transformation o

2 views of a structure projectively
equivalent to the true structure 14



Metric Structure

» It control poirts are available we can go from a
projective to a true metric reconstruction.

* A projective reconstruction can be upgraded to a true
metric reconstruction by specifying the 3D locations of
5 (or more) world points.

-

Projective reconstruction Metne reconstruction



