Reconstruction Steps

- 1. Identify a number of (at least 8) point correspondances.
- 2. Estimate the fundamental matrix using the normalised 8point algorithm.
- 3. Determine the external camera parameters (rotation and translation from one camera to the other)
 - a. Calculate the essential matrix from the fundamental matrix and the camera calibration matrices.
 - b. Extract the rotation and translation components from the essential matrix.
 - 4. Determine 3D point locations.

Determining Extrinsic Camera Parameters

- Want to determine rotation and translation from one camera to the other.
- We know the camera matrices have the form

$$M_1 = C_1 \begin{bmatrix} I & \vec{0} \end{bmatrix}$$
$$M_2 = C_2 \begin{bmatrix} R & \vec{t} \end{bmatrix}$$

Why can we just use this as the external parameters for camera M1? Because we are only interested in the *relative* position of the two cameras.

• First we undo the Intrinsic camera distortions by defining new *normalized* cameras

$$M_{1}^{norm} = C_{1}^{-1}M_{1}$$
 and $M_{2}^{norm} = C_{2}^{-1}M_{2}$

Determining Extrinsic Camera Parameters

• The *normalized* cameras contain unknown parameters

$$M_{1}^{norm} = C_{1}^{-1}M_{1} \implies M_{1}^{norm} = \begin{bmatrix} I & \vec{0} \end{bmatrix}$$
$$M_{2}^{norm} = C_{2}^{-1}M_{2} \implies M_{2}^{norm} = \begin{bmatrix} R & \vec{t} \end{bmatrix}$$

• However, those parameters can be extracted from the Fundamental matrix

$$\mathbf{F} = C_2^{-t} \mathbf{E} C_1^{-1} \qquad \mathbf{E} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \mathbf{R} = \vec{t}_x \mathbf{R}$$

Extract t and R from the Essential Matrix

How do we recover t and R? Answer: SVD of \mathcal{E} $\mathcal{E} = USV^{t}$

- S diagonal
- U,V orthogonal and det() = 1 (rotation)

$$R = UWV^{t} \text{ or } R = UW^{t}V^{t} \quad \vec{t} = u_{3} \text{ or } \vec{t} = -u_{3}$$
$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reconstruction Ambiguity

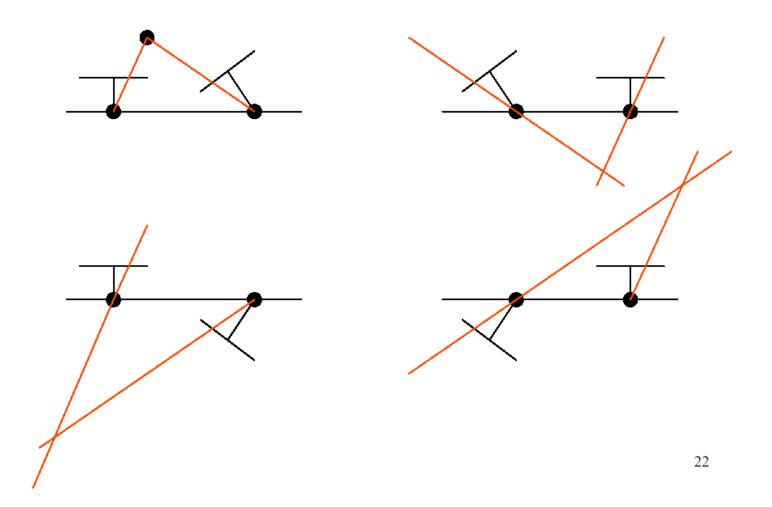
So we have 4 possible combinations of translations and rotations giving 4 possibilities for $M_2^{norm} = [\mathbf{R} \mid t]$

1.
$$M_2^{norm} = [UW^tV^t | t]$$

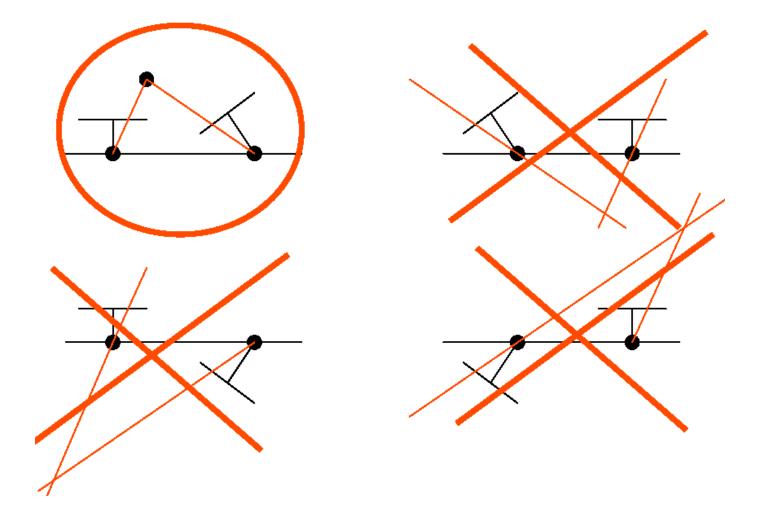
2. $M_2^{norm} = [UWV^t | t]$
3. $M_2^{norm} = [UW^tV^t | -t]$
4. $M_2^{norm} = [UWV^t | -t]$

Which one is right?

• We can determine which of these is correct by looking at their geometric interpretation.



Both Cameras must be facing the same direction



Which one is right?

- The correct pair will have our data points in front of both cameras.
- How do we choose the correct pair?
- Procedure:
 - Take a test point from data
 - Backproject to find 3D location
 - Determine the depth of 3D point in both cameras
 - Choose the camera pair that has a positive depth for both cameras.

How do we backproject?

$$x'_{measured} = C_2 x'$$
 $x_{measured} = C_1 x$

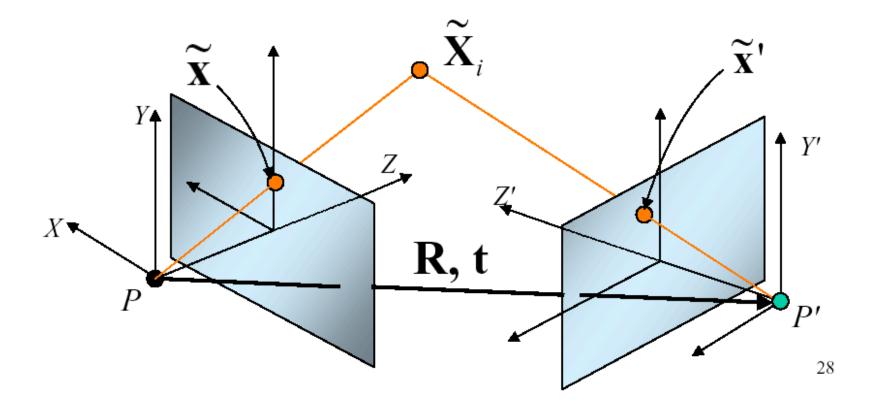
Knowing C_i allows us to determine the undistorted image points : $x' = C_2^{-1} x'_{measured}$ $x = C_1^{-1} x_{measured}$

Recalling the projection equations allows to relate the world point and the image points.

$$\begin{aligned} x' &= C_2^{-1} x'_{measured} & x = C_1^{-1} x_{measured} \\ z' x' &= C_2^{-1} C_2 M_2^{norm} X & zx = C_1^{-1} C_1 [\mathbf{I} \mid 0] X \\ z' x' &= M_2^{norm} X & zx = [\mathbf{I} \mid 0] X \end{aligned}$$

Backprojection to 3D

We now know x, x', R, and tNeed X



$$zx_i = M^{norm}X_i$$
 Solving...

-

$$\begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix} = \begin{bmatrix} m_{1}^{t} \\ m_{2}^{t} \\ m_{3}^{t} \end{bmatrix} X_{i} \Rightarrow \begin{cases} z \, u_{i} = m_{1}^{t} \cdot X_{i} \\ z \, v_{i} = m_{2}^{t} \cdot X_{i} \end{cases} \Rightarrow \begin{cases} (m_{3}^{t} \cdot X_{i}) \, u_{i} = m_{1}^{t} \cdot X_{i} \\ (m_{3}^{t} \cdot X_{i}) \, v_{i} = m_{2}^{t} \cdot X_{i} \end{cases}$$
$$\Rightarrow \begin{cases} (m_{3}^{t} \cdot X_{i}) \, u_{i} - m_{1}^{t} \cdot X_{i} = 0 \\ (m_{3}^{t} \cdot X_{i}) \, v_{i} - m_{2}^{t} \cdot X_{i} = 0 \end{cases}$$
$$\Rightarrow \begin{bmatrix} u_{i}(m_{3}^{t}) - m_{1}^{t} \\ v_{i}(m_{3}^{t}) - m_{2}^{t} \end{bmatrix} X_{i} = 0$$

Solving...

• Similarly for the other camera

$$\begin{bmatrix} u'_i ({}^2m_3^t) - {}^2m_1^t \\ v'_i ({}^2m_3^t) - {}^2m_2^t \end{bmatrix} X_i = 0$$

Combining 1 & 2:

$$\begin{bmatrix} u_i(m_3^t) - m_1^t \\ v_i(m_3^t) - m_2^t \\ u'_i(^2m_3^t) - m_1^t \\ v'_i(^2m_3^t) - m_1^t \end{bmatrix} X_i = 0$$

Where ${}^{2}m_{i}^{t}$ denotes the *i*th row of the second camera's normalized projection matrix.

 $AX_i = 0$ It has a solvable form! Solve using minimum eigenvalue-Eigenvector approach e.g. svd (or null)

Finishing up

- Now we have the 3D point \mathbf{X}_i
- Determine the location of this point for all 4 possible camera configurations
- Next determine the depths of these points in in each camera.

A little more Linear Algebra

• Given 2 simultaneous equations we can write them in matrix form

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases} \iff \mathbf{A} \mathbf{x} + \mathbf{c} = \mathbf{0}$$

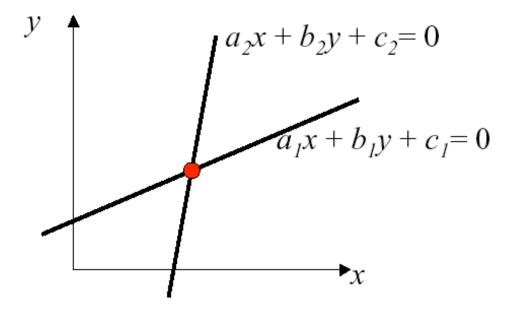
~

where
$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \ \mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and the solution is $\mathbf{x} = -\mathbf{A}^{-1}\mathbf{c}$

Interpretation

- We are asking for a single (x,y) point that satisfies both line equations.
- Graphically this amounts to finding the point that lies on both lines.



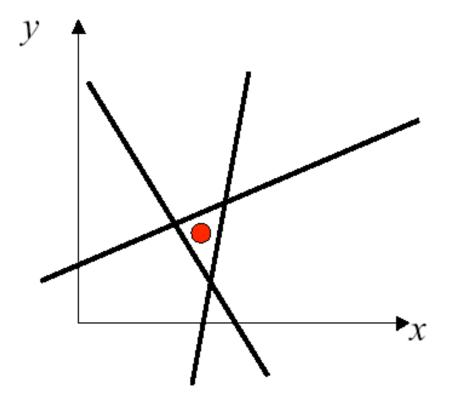
• Given *n* simultaneous equations in 2D

$$a_1x + b_1y + c_1 = 0$$

 $a_2x + b_2y + c_2 = 0$
 \dots
 $a_nx + b_ny + c_n = 0$
 $\mathbf{A} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \ \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

- For n>2 this is an over-constrained system. A⁻¹ does not exist.
- There need not be an exact solution.
- We want to find the 'best' solution.

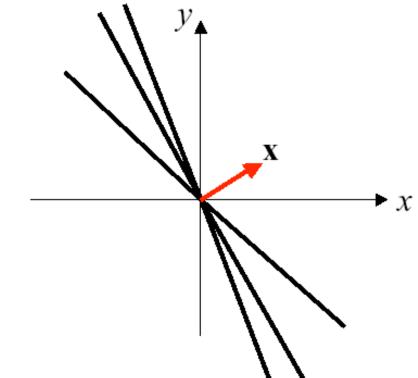
• Graphically we want to find the point that is closest to all *n* lines at once.



• Note that "closeness" means Euclidean distance for (unweighted) least squares solutions.

What about when c = 0? *Case*: Ax = 0, $x \neq 0$

- Solve Ax = 0, for non-zero x,
- Find the *direction* of **x** that *minimises* **Ax**.
- In 2D this can be interpreted as finding the **x** that is *most perpendicular* to all *n* lines (ie. most perpendicular to the rows of **A**).



Why does Ax = 0 represent a normal constraint?

X

a

The equation of a (2D) line can be written y = mx + b $\Rightarrow ax + by = -c$ $\Rightarrow ax + by + c = 0$

$$\begin{bmatrix} \vec{a}^t \vec{x} \end{bmatrix} = 0, \quad \vec{a} = \begin{bmatrix} a & b & c \end{bmatrix}^t, \quad \vec{x} = \begin{bmatrix} x & y & 1 \end{bmatrix}$$

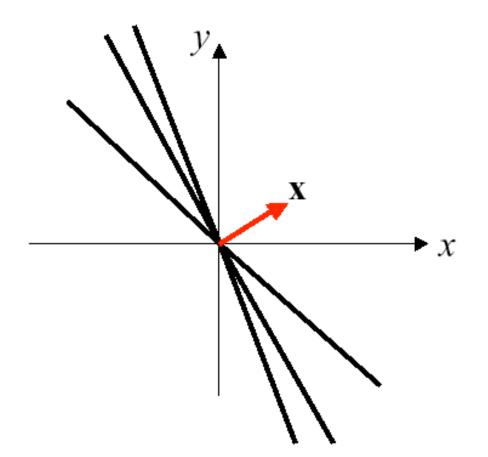
For dimension > 2, this is a *hyperplane*

Note x is only defined up to a scale factor, because $\vec{a}^t (\lambda \vec{x}) = 0$ $\lambda (\vec{a}^t \vec{x}) = 0$

$$\lambda(\vec{a}^t \vec{x}) = 0$$
$$\vec{a}^t \vec{x} = 0$$

Solution

• Choose **x** to be the eigen vector associated with the smallest eigen value of $\mathbf{A}^{T}\mathbf{A}$ Why is this?



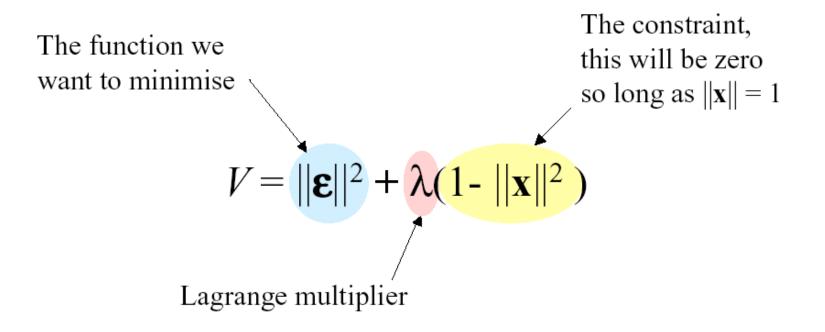
- **x** can only be determined to a scale.
- So, choose **x** to be a unit vector,

 $||\mathbf{x}|| = 1$,

- Define $\varepsilon = Ax$,
- We want to find an **x** so that $||\mathbf{\varepsilon}||$ is as small as possible, and $||\mathbf{x}|| = 1$.
- We can achieve this by minimising the positive cost function $C = ||\mathbf{\epsilon}||^2$ using the method of Lagrange Multipliers.

Enforce both constraints using Lagrangian multipliers

• Proceeding with method of Lagrange multipliers, define V



$$V = \|\mathbf{\varepsilon}\|^2 + \lambda(1 - \|\mathbf{x}\|^2)$$

V can be rewritten as

$$V = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \lambda (1 - \mathbf{x}^{\mathrm{T}} \mathbf{x})$$

since

•
$$\|\mathbf{\varepsilon}\|^2 = \mathbf{\varepsilon}^T \mathbf{\varepsilon} = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$$
 and

• $||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x}$

• Find critical points of V, ie. where the derivative dV/dx is zero

$$V = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \lambda (1 - \mathbf{x}^{\mathrm{T}} \mathbf{x})$$

$$dV/d\mathbf{x} = 2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\lambda\mathbf{x} = 0$$

$$\Rightarrow$$
 A^T**Ax** = λ **x**

- This is the eigen equation!
- x must be an eigen vector of A^TA

 (so that dV/dx = 0) this is a necessary, but not sufficient condition to minimise C.
- Which eigen vector to choose?
- Choose the eigen vector that minimises *C*.

• Let's substitute in for x an arbitrary unit eigen vector \mathbf{e}_n .

 $C = \|\mathbf{\varepsilon}\|^2$ $= \mathbf{e}_n^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{e}_n$ $= \mathbf{e}_n^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{e}_n)$ $= \mathbf{e}_n^{\mathrm{T}} \mathbf{e}_n \lambda$ $= \lambda_n$

This is minimised by choosing

$$\mathbf{x} = \mathbf{e}_{n}$$

where \mathbf{e}_n is the eigen vector associated with the smallest eigen value λ_n .

SVD

For an *n* × *m* matrix there exist unitary* matrices U and V such that

$$\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_m] \longleftarrow m \times m \text{ matrix}$$
$$\mathbf{V} = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n] \longleftarrow n \times n \text{ matrix}$$

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}, \text{ where } \mathbf{S} = \begin{bmatrix} \mathbf{S}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad \mathbf{S}_{1} = \begin{bmatrix} s_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & s_{2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & s_{p} \end{bmatrix}$$

and $s_1 \ge s_2 \ge ... \ge s_p \ge 0, p = \min\{n, m\}$

*a real matrix U is unitary if $U^{-1} = U^T$

SVD

s_i is the *i*th singular value of **A**, the vectors **u**_i and **v**_i are the left and right singular vectors of **A**.

- s_i^2 is an eigenvalue of AA^T or A^TA ,
- \mathbf{u}_i is an eigen vector of $\mathbf{A}\mathbf{A}^{\mathrm{T}}$ and
- \mathbf{v}_i is an eigen vector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

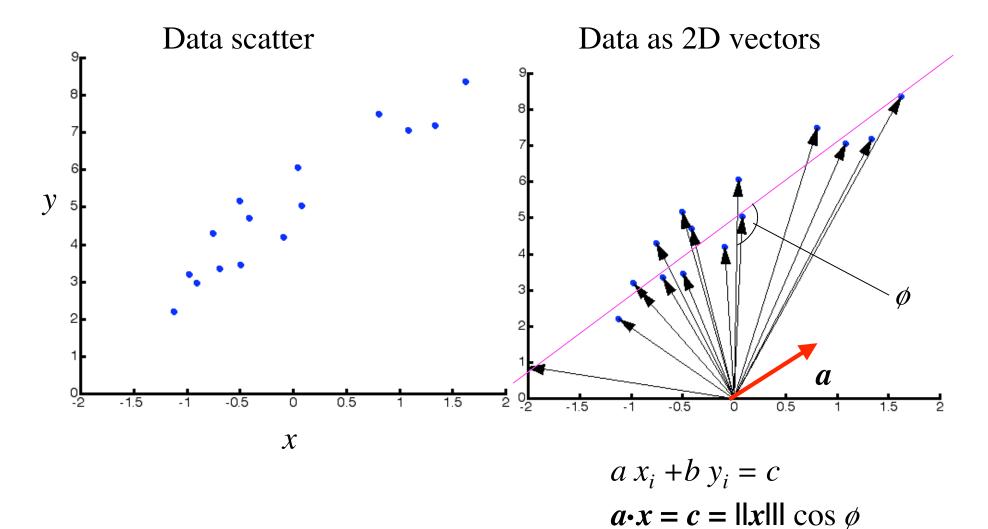
SVD

- $\mathbf{V} = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n]$
- is a matrix of eigen vectors of A^TA with associated eigen values s_i². The eigen vector corresponding to the smallest eigen value of A^TA is v_n.
- Hence the non-zero **x** that minimises

$$\mathbf{A}\mathbf{x}=\mathbf{0}$$

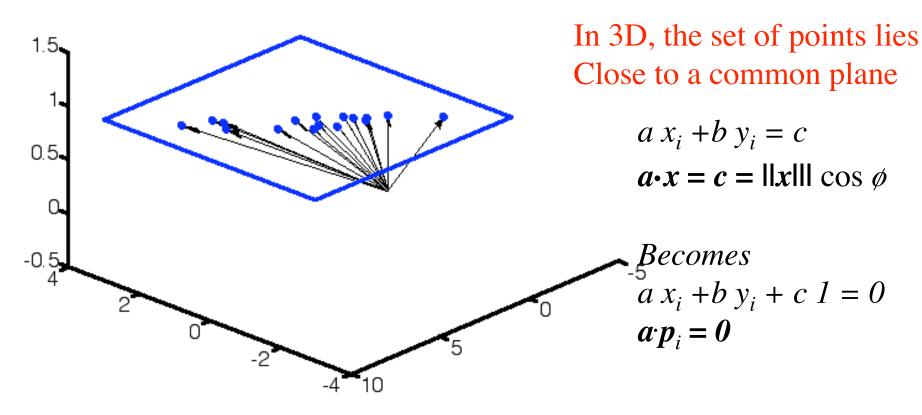
is $\mathbf{x} = \mathbf{v}_n$.

Example: Least Square Line Fitting



Introducing Homogenous Coordinates

Data as 3D homogenous vectors $p_i = [x_i \ y_i \ 1]'$



Geometry of solution

