
Reconstruction Steps



Determining Extrinsic Camera Parameters

  

† 

M1 = C1 I
r 
0 [ ]

M2 = C2 R
r 
t [ ]

Why can we just use this as the external parameters for
camera M1?
Because we are only interested in the relative position
of the two cameras.

•     First we undo the Intrinsic camera distortions by defining new
normalized cameras
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M
1

norm = C1
-1M1 and M2

norm = C2
-1M2



Determining Extrinsic Camera Parameters
•     The normalized cameras contain unknown parameters
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•     However, those parameters can be extracted from the 
Fundamental matrix
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Extract t and R from the Essential
Matrix

How do we recover t and R?  Answer: SVD of E

  

† 

E = USV t    
S           diagonal
U,V       orthogonal and det() =1 (rotation)
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† 
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t = u3     or       
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t = -u3



Reconstruction Ambiguity
So we have 4 possible combinations of
translations and rotations giving 4 possibilities for
M2

norm = [R | t]

1.  M2
norm = [UWtVt | t]

2.  M2
norm = [UWVt | t]

3.  M2
norm = [UWtVt | -t]

4.  M2
norm = [UWVt | -t]



Which one is right?



Both Cameras must be facing the
same direction



Which one is right?



How do we backproject?

† 

x'measured = C2x ' xmeasured = C1x

Knowing Ci allows us to determine the 
undistorted image points :
x'= C2

-1x'measured x = C1
-1xmeasured

Recalling the projection equations allows to 
relate the world point and the image points.
x'= C2

-1x'measured x = C1
-1xmeasured

z' x '= C2
-1C2 M2

norm X zx = C1
-1C1 I | 0[ ]X

z' x '= M2
norm X zx = I | 0[ ]X



Backprojection to 3D
We now know x, x’,  R,  and  t
Need X



Solving…
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zxi = M norm Xi
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Solving…
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u'i(2m3
t )-2m1
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Combining 1 &  2 :
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Xi = 0

AXi = 0
It has a solvable form!  Solve using minimum
eigenvalue-Eigenvector approach e.g. svd (or null)

Where 2mt
i denotes the ith

row of the second
camera’s normalized
projection matrix.



Finishing up



A little more Linear Algebra



Interpretation
• We are asking for a single (x,y) point that 
satisfies both line equations.





•  Note that “closeness” means Euclidean distance for
(unweighted) least squares solutions.



What about when c = 0?   Case:  Ax = 0,  x≠0



Why does Ax = 0 represent a
normal constraint?

  

† 

The equation of a (2D) line can be written
y = mx + b
fi ax + by = -c
fi ax + by + c = 0

r a t r x [ ] = 0, r a = a b c[ ]t , r x = x y 1[ ]t

For dimension > 2, this is a hyperplane

x

Note x is only defined up to a scale
factor, because

a

  

† 

r a t (l
r x ) = 0

l(r a t r x ) = 0
r a t r x = 0







Enforce both constraints using
Lagrangian multipliers









SVD



SVD



SVD



Example: Least Square Line Fitting
Data scatter Data as 2D vectors

x

y

a

a xi +b yi = c
a.x = c = ||x||| cos ø

ø



Introducing Homogenous
Coordinates

Data as 3D homogenous vectors pi = [xi  yi  1]’

In 3D, the set of points lies
Close to a common plane

a xi +b yi = c
a.x = c = ||x||| cos ø

Becomes
a xi +b yi + c 1 = 0
a.pi = 0



Geometry of solution


