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Reconstruction Steps

[dentify a number of (at least 8) point correspondances.

Estimate the fundamental matrix using the normalised 8-
point algorithm.
Determine the external camera parameters (rotation and

translation from one camera to the other)

Calculate the essential matrix from the fundamental matrix and
the camera calibration matrices.

Extract the rotation and translation components from the
essential matrix.

Determine 3D point locations.



Determining Extrinsic Camera Parameters

« Want to determine rotation and translation from one
camera to the other.

e We know the camera matrices have the form

Why can we just use this as the external parameters for
camera M1?

M C ] 6 Because we are only interested in the relative position
1~ ¥ of the two cameras.

M,=C,)R 1]

e First we undo the Intrinsic camera distortions by defining new
normalized cameras

M™™"=C'M, and M} =C,"'M,

1



Determining Extrinsic Camera Parameters

e The normalized cameras contain unknown parameters

M:lorm _ Cl-lMl _ M:zorm _ [I 6]
My =C,'M, = M =[R i]

 However, those parameters can be extracted from the
Fundamental matrix

o 0 -t t,
F=GEG E=|t. 0 -t|R=°tR
£ =CifC, S0




Extract t and R from the Essential
Matrix

How do we recover f and R? Answer: SVD of E

E=USV'
S diagonal
U,V  orthogonal and det() =1 (rotation)

R=UWV' or R=UW'V' f{=y.  or f=-u,
0 -1 0
W=l 0 0
0 0 1]




Reconstruction Ambiguity

So we have 4 possible combinations of
translations and rotations giving 4 possibilities for

Mo =[R | f]

1. Mo =[UW'V' | f]
2. M, = [UWV | {]

3. Mo = [UW'V'| -]
4. Mjom = [UWV!| -f]




Which one 1s right?

 We can determine which of these 1s correct
by looking at their geometric interpretation.
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Both Cameras must be facing the
same direction




Which one 1s right?

* The correct pair will have our data points in front
of both cameras.

* How do we choose the correct pair?

* Procedure:
— Take a test point from data
— Backproject to find 3D location
— Determine the depth of 3D point in both cameras

— Choose the camera pair that has a positive depth for
both cameras.



How do we backproject?

X' =(C,x' X =C\x

measured measured

Knowing C; allows us to determine the
undistorted 1image points :

1 -1 _ -1
X = C2 X measured X = Cl xmeasured

Recalling the projection equations allows to
relate the world point and the image points.

'x'= C; l’x'measured A= Cl_lxmeasured
'x'=C;'C,M)"™X z=C;'C [110]X
Z'x'=M;""X zx =[110]X



Backprojection to 3D

We now know x, x’, R, and ¢
Need X

-
A
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Solving...

in _ MnormXi
- - B l'-
u| |m,
4
4
_m3-

( t

u, =m; - X,
!

v, =m, " X,
!

z=m;" X,

> <

X)u, =m, - X,
X)v,=m,;- X
X)u,—m; - X, =0
X)v,.—-m;- X, =0
)= 0
)—m,|




- L
u'( mg)_ mlt

2 2
V' (Cmy)="m,

X,

l

Solving...

* Similarly for the other camera

=0

Combining 1 & 2:

u,(my)—m,
Vi(m;)_ mé

2 2
u'( m;)— mlt

2 2
V'( m;)— m;

Xi

=0

Where ?m’. denotes the ith
row of the second
camera’s normalized
projection matrix.

It has a solvable form! Solve using minimum
AX, =0 eigenvalue-Eigenvector approach e.g. svd (or null)



Finishing up
* Now we have the 3D point X ;

* Determine the location of this point for all 4
possible camera configurations

* Next determine the depths of these points in
In each camera.



A little more Linear Algebra

* Given 2 simultaneous equations we can write them in
matrix form

ax+byv+c,=0
! I ! & AxX+ce=0
ax+b,y+c,=0

where a b x| c, 0
A= , X = , €= , 0=
{Iﬂ, bj :Lj Cz 0

i

and the solution is X = —A "¢



Interpretation

* We are asking for a single (x,y) point that

satisfies both line equations.

* Graphically this amounts to finding the
point that lies on both lines.

ax+by+c,=0

ax+by+c=0




Given n simultaneous equations 1n 2D
a;x + b‘,_j,; T )= 0
& Ax+ce=0

LIW’L‘ . bf.":'; T C,= O

‘n — -

a, b C, 0
a, b, X C, 0
A= . L x=| [e=|. | 0=
- ® "l_.: . .
a, b, C, 0|
For n>2 this is an over-constrained system. A-! does not exist.

There need not be an exact solution.

We want to find the 'best' solution.



* Graphically we want to find the point that is
closest to all n lines at once.

Yol
-

"y

e Note that “closeness” means Euclidean distance for
(unweighted) least squares solutions.



What about when ¢ =07 Case: Ax =0, xz0

* Solve Ax =0, for non-zero x,
 Find the direction ot x that minimises AX.

* In 2D this can be interpreted as finding the x that 1s most
perpendicular to all n lines (1e. most perpendicular to the
rows of A).




Why does Ax = 0 represent a
normal constraint?

The equation of a (2D) line can be written
y=mx+b

= ax + by =—c \
=ax+by+c=0

@'5]=0, a=[a b ], =[x y 1] ¢
For dimension > 2, this i1s a hyperplane

Note x 1s only defined up to a scale
factor, because a'(Ax) =0

Ma'x)=0
a'x=0



Solution

* Choose x to be the eigen vector associated with
the smallest eigen value of ATA. ...Why is this?




* Xx can only be determined to a scale.
* So, choose x to be a unit vector,

x| =1,

* Define € = AX,

1s as small as

« We want to find an x so that ||g]
possible, and [|x|| = 1.

* We can achieve this by minimising the positive
cost function C = ||€|]* using the method of
Lagrange Multipliers.



Enforce both constraints using
Lagrangian multipliers

* Proceeding with method of Lagrange multipliers,
define V'

The constraint,
this will be zero

want to minimise so long as [[x|| = 1
\ %
V= g* +A1- []x]*)

/

Lagrange multiplier

The function we



V= lel]* + A1 [[x]|*)

J can be rewritten as

since

L

L

€

X

V=x'ATAx + A(1-xx)

2=¢gle=x'ATAx and

=

x!x



» Find critical points of V| ie. where the derivative dV/dx 1s

Zero
V=xTATAx + A(1-x"x)
dV/dx =2ATAx - 2Ax =0
= ATAx =Ax
* This 1s the eigen equation!

* X must be an eigen vector of ATA

(so that dV/dx = 0) this is a necessary, but not
sufficient condition to minimise C.

* Which eigen vector to choose?

* Choose the eigen vector that minimises C.



Let’s substitute 1n for x an arbitrary unit eigen vector e,,.

1

This 1s minimised by choosing
X=e,

where e, 1s the eigen vector associated with the smallest
eigen value A,




SVD

* For an n X m matrix there exist unitary* matrices U and V
such that

U=[u,|u,|...ju,] «—— m X m matrix
V =[v,|v,|...]v,] «—— n X n matrix

s 0 0
A=USV ! where §-= [SO' 8} . 8, = 0 2 0
0 0 s,

and 5,2 5,2 ... 2

[

s, 20, p =min{n,m;|

*a real matrix U is unitary if U-! = U!




SVD

s. is the /™ singular value of A, the vectors u,
and v, are the left and right singular vectors
of A.

5.2 is an eigenvalue of AA" or ATA,
u; is an eigen vector of AA" and

v. is an eigen vector of ATA.



SVD

* V= Y]y,

* is a matrix of eigen vectors of ATA with
associated eigen values 5. The eigen
vector corresponding to the smallest eigen
value of ATAis v,

* Hence the non-zero x that minimises

Ax =0

ISX=V,



Example: Least Square Line Fitting

. Data scatter Data as 2D vectors
O
ak
sk
7k
7k
ak
Gk
5L
sk
4k ak
3k sl ¢
2k oL
1k 1k
s = 05 0 05 1 15 2 0 =

ax; +by, =c

a-x = c¢ = llxlll cos ¢



Introducing Homogenous
Coordinates

Data as 3D homogenous vectors p, = [x; y;, 1]’

In 3D, the set of points lies
Close to a common plane

1.3

Tof

. ax;+by,=c

a-x =c = llxlll cos ¢

_?ecomes
ax;+by,+cl =0
ap;=0




Geometry of solution




