Unsupervised Segmentation



Unsupervised Segmentation and
Grouping

Motivation: Many computer
vision problems would be easy,
except for background
interference.

Unsupervised Segmentation: no
training data

Use: Obtain a compact
representation from an
image/motion sequence/set of
tokens

Should support application

Broad theory is absent at
present

Grouping (or clustering)

— collect together tokens that
“belong together”

Fitting
— associate a model with tokens
— 1ssues
e which model?

e which token goes to which
element?

* how many elements in the
model?



General 1deas

Features (tokens)

— whatever we need to group
(pixels, points, surface
elements, etc., etc.)

top down segmentation (model
based)

— features belong together
because they lie on the same
object.

bottom up segmentation (image
based)

— features belong together
because they are locally
coherent

These two are not mutually
exclusive
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Basic 1deas of grouping in humans

e Figure-ground discrimination * Gestalt properties
— grouping can be seen in terms — elements in a collection of
of allocating some elements to elements can have properties
a figure, some to ground that result from relationships
— impoverished theory (Muller-Lyer effect)

e gestaltqualitat

— A series of factors affect
whether elements should be
grouped together

e Gestalt factors






Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region



Continuity

{Di

) )

L

=

= s

g &
T
P .A,(x\}/

//f\\ [HJ..,/|\\
~J (AN
. _xJL}fx

Closure










HDOHOHO
HOHOHRONO







Are Gestalt laws the result of observed
regularity in scenes?

‘-".‘_ "
», ! *,
P \ ", K
¥ ; - i ;
‘f ‘t - MH"\ "_c‘l
’ * Vg . )
1 * ||' \'x ) g }
I I || e e ,."IL B ._’,-f"-} /__ :
4 ! '. e S e
e . }
. P | o
" ra e 3 '
‘\.\ f./ 1\-‘.__\_ _‘__,.--"" .
Oy ot -

(&)

. ;
. -

{L:)
Fig. 1. (&) A 1D Markoy randorm fiald whare the nodes reprasant randam varables for positans of contour points, (B) Mode A is spatially adjacent to
point B, but it is far away from B In the circular neighborhood of (&),
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Collect statistics on local curvature and

adjacency for natural contours.
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Fig. 5. () The histagrams of «(+) averaged over 22 animate chjecls at scale O {solid curve), scala 1 {dashad curve), and scato 2 {(dash-dotted curve),
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Sampled boundaries from learning probability model.
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Fig. 11. 5ix of the synthesized shapes with curvalure histogram malched o animate shapes, ;14 = p'! . The histograms of these synthesizod
shepas arn shown by the dashed curves In Fig, 12



Technique: Shot Boundary Detection

Find the shots in a sequence of e Possible distances

video — frame differences

— shot boundaries usually result — histogram differences
in big differences between

_ — block comparisons
succeeding frames

— edge differences

Strategy: L.
Y . . e Applications:

— compute interframe distances _ representation for movies, or

— declare a boundary where these video sequences

are big e find shot boundaries

e obtain “most
representative” frame

— supports search



Technique: Background Subtraction

If we know what the * Approach:

background looks like, it is easy — use a moving average to

to identify “interesting bits” estimate background image

Applications — subtract from current frame
— Person in an office — large absolute values are

— Tracking cars on a road interesting pixels

e trick: use morphological
operations to clean up
pixels

— surveillance












Segmentation as clustering

Cluster together (pixels, tokens,
etc.) that belong together
Agglomerative clustering

— attach closest to cluster it is
closest to

— repeat
Divisive clustering

— split cluster along best
boundary

— Repeat

Point-Cluster distance

— single-link clustering

— complete-link clustering
— group-average clustering
Dendrograms

— yield a picture of output as
clustering process continues



distance

i

123456



K-Means

e Choose a fixed number of e Algorithm

clusters — fix cluster centers; allocate
points to closest cluster

— fix allocation; compute best
cluster centers

e Choose cluster centers and

point-cluster allocations to
minimize error e x could be any set of features

for which we can compute a

e can’t do this by search, because , ,
Y distance (careful about scaling)

there are too many possible
allocations.

2 > -l

i€clusters | j&elements of i'th cluster



Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.




K-means using colour and
position, 20 segments




Graph theoretic clustering

e Represent tokens using a
weighted graph.
— affinity matrix
e Cut up this graph to get
subgraphs with strong interior
links



Image Segmentation as Graph Partitioning










Boundaries of image regions defined by a
number of attributes

— Brightness/color
— Texture

— Motion

— Stereoscopic depth

— Familiar configuration




Measuring Affinity

Intensity
aff(x,y)= exp{—( %03)(\\1(30 - I(Y)Hz )}
Distance
aff (x, y) = exp{—( %02) (||x -y )}
Texture

aff (x,y) = exp{—<%0?>(uc(x) _ C(y)Hz)}

c(x) denotes a histogram,for instance



Scale affects affinity




Eigenvectors and cuts

Simplest idea: we want a
vector a giving the association
between each element and a
cluster

We want elements within this

This is an eigenvalue problem -
choose the eigenvector of A
with largest eigenvalue

Maximize :
cluster to, on the whole, have - ¢ T
strong affinity with one another E=a ‘g/a +AMl-a’a)
- 0
Let w, =aff(x;,x;) forpixelsx; & x; Qet: 2= -
e  We could maximize da
T = 2WCZ — 2)\.Cl
E=a Wa
= Wa = Aa

But need the constraint
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More than two segments

e Two options

— Recursively split each side to get a tree, continuing till the
eigenvalues are too small

— Use the other eigenvectors



Normalized cuts

e Current criterion evaluates * Maximize
within cluster similarity, but not
across cluster difference Nassoc(A,B) =

e Instead, we’d like to maximize (assoc(A, A)) (assoc(B, B))
the within cluster similarit +
compared to the across clu};ter assoc(A,V) assoc(B,V)
difference

* Write graph as V, one cluster as o« je. construct A, B such that
A and the other as B their within cluster similarity is

high compared to their
aASSO C( A, B) _ E | 0% (i, ]) association with the rest of the
iEA, jJEB graph



Normalized cuts

Write a vector y whose e This is hard to do, because y’s
elements are 1 if item is in A, -b values are quantized
if it’s in B

Write the matrix of the graph as
W, and the matrix which has
the row sums of W on its
diagonal as D, 1 is the vector
with all ones.

Criterion becomes mlIly (

y'(D - W)Y)
y' Dy

and we have a constraint yTDl =0



Normalized cuts

Instead, solve the generalized eigenvalue problem
maxy(yT(D - W)y) subject to (yTDy = 1)
which gives
(D-W)y=ADy

Now look for a quantization threshold that maximises the criterion ---

i.e all components of y above that threshold go to one, all below go to -
b



iven a partition of nodes of a graph, V. into two sets A and B, let @ he an N = |V/|
dimensional indicator vector, 2; = | if node i is in A, and —1 otherwise. Let d{i) =T, wi(i. j).
be the total connection from node 2 to all other nodes. With the definitions @ and d we can
rewrite Newt( A, B) as:
cut( A. B) cut{ B, A)

Newt(4,B) = assoc( AV assoc( B, V)
_ 2 &0 <o) T UWGE L
B Lanod:
i 2@ <02 50) ~ Wi
2@ <0 d;
Let D he an N x N diagonal matrix with d on its diagonal, W be an N x N symmetrical

matrix with W{ij) = w. k = ;i%,ﬁ and 1 be an N x 1 vector of all ones. Using the

[act 1—‘5& andd 1%“1’ are indicator vectors for x; > 0 and z; < 0 respectively. we can rewrite

A[Neut(@)] as:

— ey o-wilix) 4 (1-&)"(D=-Wi 1l-a)
1°pl (1-11" Dl
(@ p-Wix+1" p-w)l) n 2(1=261" (D=W)
ki—i1 Dl mi—i) 1" D1




Setting y = (1 4+ @) — b1 —a).

Shi & Malik(1997) show:

Ty — W'
ming N cut(a) =mr'1rz-yy DJ, “T"Iy.
y Dy
with the condition 4(i) € {1.—b} and y"D1 = 0.
This 1s Equivalent to: 1 1 ) 1
D HD-W)D %2=\z. D 2DD 2;-D 2WD 27 = Az
1 1
.z = D*y. Iz-D *WD *z = Az |
But solutions to above are solutions to:
1 1

D WD 2z = )z
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Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998



Ng,Jordan,Weiss, 2002

Given a set of points § = {51.... ,8,} in B that we want to cluster into k subsets:
1. Form the affinity matrix 4 € R"*" defined by Ay = expl—||& — 5| /207) if
7 J. and Ag =0
2. Define D' to be the diagonal matrix whose (i, f)-element is the sum of A's i-th
row, and comstruct the matrix L= D~12 4Ap~1t/21

3. Find . 22,00, T, the k largest eigemvectors of L (chosem to be orthogonal

to each other in the case of repeated eigemvalues), and form the matrix X' =
[£122 . .. 5] € R*™* by stacking the eigenvectors in columms,

4. Form the matrix V" from X by renormalizing each of X's rows to have unit length
(i ¥5 = }f{;i_.u"'l:Ej X.E,;:‘Jl-“ E:‘J.

5. Treating each row of ¥ as a point in B*, cluster them into k clusters via K-means
or any other algorithm (that attempts to minimize distortion),

6. Finally, assign the original point & to cluster j if and only if row ¢ of the matrix
Y was assigned to cluster j.
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F igure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000



