## Unsupervised Segmentation

# Unsupervised Segmentation and Grouping

- Motivation: Many computer vision problems would be easy, except for background interference.
- Unsupervised Segmentation: no training data
- Use: Obtain a compact representation from an image/motion sequence/set of tokens
- Should support application
- Broad theory is absent at present

- Grouping (or clustering)
  - collect together tokens that
    "belong together"
- Fitting
  - associate a model with tokens
  - issues
    - which model?
    - which token goes to which element?
    - how many elements in the model?

#### General ideas

- Features (tokens)
  - whatever we need to group (pixels, points, surface elements, etc., etc.)
- top down segmentation (model based)
  - features belong together because they lie on the same object.
- bottom up segmentation (image based)
  - features belong together because they are locally coherent
- These two are not mutually exclusive



Why do these features belong together?



## Basic ideas of grouping in humans

- Figure-ground discrimination
  - grouping can be seen in terms of allocating some elements to a figure, some to ground
  - impoverished theory

- Gestalt properties
  - elements in a collection of elements can have properties that result from relationships (Muller-Lyer effect)
    - gestaltqualitat
  - A series of factors affect whether elements should be grouped together
    - Gestalt factors







Parallelism



Symmetry



Continuity



Closure









Are Gestalt laws the result of observed regularity in scenes?



Fig. 1. (a) A 1D Markov random field where the nodes represent random variables for positions of contour points. (b) Node A is spatially adjacent to point B, but it is far away from B in the circular neighborhood of (a).





(b)

## Collect statistics on local curvature and adjacency for natural contours.



Fig. 5. (a) The histograms of  $\kappa(s)$  averaged over 22 animate objects at scale 0 (solid curve), scale 1 (dashed curve), and scale 2 (dash-dotted curve), the horizontal axis is  $\kappa(s)$  with unit  $dz = \frac{\pi}{(3\times20)}$ . (b) The logarithm of curves in (a).

#### Sampled boundaries from learning probability model.



Fig. 11. Six of the synthesized shapes with curvature histogram matched to animate shapes,  $\mu_{\text{syn}}^{(1)} = \mu_{\text{curv}}^{(2)}$ . The histograms of these synthesized shapes are shown by the dashed curves in Fig. 12.

## Technique: Shot Boundary Detection

- Find the shots in a sequence of video
  - shot boundaries usually result in big differences between succeeding frames
- Strategy:
  - compute interframe distances
  - declare a boundary where these are big

- Possible distances
  - frame differences
  - histogram differences
  - block comparisons
  - edge differences
- Applications:
  - representation for movies, or video sequences
    - find shot boundaries
    - obtain "most representative" frame
  - supports search

### Technique: Background Subtraction

- If we know what the background looks like, it is easy to identify "interesting bits"
- Applications
  - Person in an office
  - Tracking cars on a road
  - surveillance

- Approach:
  - use a moving average to estimate background image
  - subtract from current frame
  - large absolute values are interesting pixels
    - trick: use morphological operations to clean up pixels



#### Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
  - attach closest to cluster it is closest to
  - repeat
- Divisive clustering
  - split cluster along best boundary
  - Repeat

- Point-Cluster distance
  - single-link clustering
  - complete-link clustering
  - group-average clustering
- Dendrograms
  - yield a picture of output as clustering process continues



distance



### K-Means

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can't do this by search, because there are too many possible allocations.

- Algorithm
  - fix cluster centers; allocate points to closest cluster
  - fix allocation; compute best cluster centers
- x could be any set of features for which we can compute a distance (careful about scaling)

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

#### Image

#### Clusters on intensity

#### Clusters on color



#### K-means clustering using intensity alone and color alone



Image

Clusters on color

K-means using color alone, 11 segments





K-means using colour and position, 20 segments





## Graph theoretic clustering

- Represent tokens using a weighted graph.
  - affinity matrix
- Cut up this graph to get subgraphs with strong interior links

#### Image Segmentation as Graph Partitioning









# Boundaries of image regions defined by a number of attributes

- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration



## Measuring Affinity

Intensity

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_i^2}\right)\left(\left\|I(x) - I(y)\right\|^2\right)\right\}$$

#### Distance

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_d^2}\right)\left(\|x - y\|^2\right)\right\}$$

Texture

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_t^2}\right)\left(\left\|c(x) - c(y)\right\|^2\right)\right\}$$

c(x) denotes a histogram, for instance



#### Eigenvectors and cuts

- Simplest idea: we want a vector a giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another

Let  $w_{ij} = aff(x_i, x_j)$  for pixels  $x_i \& x_j$ 

• We could maximize

$$E = a^T W a$$

• But need the constraint

$$a^{T}a = 1$$

• This is an eigenvalue problem choose the eigenvector of A with largest eigenvalue

> Maximize:  $E = a^{T}Wa + \lambda(1 - a^{T}a)$ Set:  $\frac{\partial E}{\partial a} = 0$  $= 2Wa - 2\lambda a$   $\Rightarrow Wa = \lambda a$

## Example eigenvector

points





#### More than two segments

- Two options
  - Recursively split each side to get a tree, continuing till the eigenvalues are too small
  - Use the other eigenvectors

#### Normalized cuts

- Current criterion evaluates within cluster similarity, but not across cluster difference
- Instead, we'd like to maximize the within cluster similarity compared to the across cluster difference
- Write graph as V, one cluster as A and the other as B

$$assoc(A,B) = \sum_{i \in A, j \in B} W(i,j)$$

• Maximize

$$Nassoc(A,B) =$$

$$\left(\frac{assoc(A,A)}{assoc(A,V)}\right) + \left(\frac{assoc(B,B)}{assoc(B,V)}\right)$$

• i.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph

#### Normalized cuts

- Write a vector y whose elements are 1 if item is in A, -b if it's in B
- Write the matrix of the graph as W, and the matrix which has the row sums of W on its diagonal as D, 1 is the vector with all ones.
- Criterion becomes

$$\min_{y} \left( \frac{y^{T} (D - W) y}{y^{T} D y} \right)$$

• and we have a constraint

 $y^T D1 = 0$ 

• This is hard to do, because y's values are quantized

#### Normalized cuts

• Instead, solve the generalized eigenvalue problem

$$\max_{y} (y^{T} (D - W)y) \text{ subject to } (y^{T} Dy = 1)$$

• which gives

$$(D-W)y = \lambda Dy$$

Now look for a quantization threshold that maximises the criterion ---i.e all components of y above that threshold go to one, all below go to b

Given a partition of nodes of a graph, V, into two sets A and B, let  $\boldsymbol{x}$  be an  $N = |\boldsymbol{V}|$ dimensional indicator vector,  $x_i = 1$  if node i is in A, and -1 otherwise. Let  $\boldsymbol{d}(i) = \sum_j w(i, j)$ , be the total connection from node  $\boldsymbol{i}$  to all other nodes. With the definitions  $\boldsymbol{x}$  and  $\boldsymbol{d}$  we can rewrite Ncut(A, B) as:

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(B, A)}{assoc(B, V)}$$
$$= \frac{\sum(\boldsymbol{x}_i > 0, \boldsymbol{x}_j < 0) - w_{ij} \boldsymbol{x}_i \boldsymbol{x}_j}{\sum \boldsymbol{x}_i > 0} d_i$$
$$+ \frac{\sum(\boldsymbol{x}_i < 0, \boldsymbol{x}_j > 0) - w_{ij} \boldsymbol{x}_i \boldsymbol{x}_j}{\sum \boldsymbol{x}_i < 0} d_i$$

Let **D** be an  $N \times N$  diagonal matrix with d on its diagonal, **W** be an  $N \times N$  symmetrical matrix with  $W(i,j) = w_{ij}$ ,  $k = \frac{\sum_{x_i \ge 0} d_i}{\sum_i d_i}$ , and **1** be an  $N \times 1$  vector of all ones. Using the fact  $\frac{1+x}{2}$  and  $\frac{1-x}{2}$  are indicator vectors for  $x_i > 0$  and  $x_i < 0$  respectively, we can rewrite 4[Ncut(x)] as:

$$= \frac{(1+x)^{T}(\mathbf{D}-\mathbf{W})(1+x)}{k\mathbf{1}^{T}\mathbf{D}\mathbf{1}} + \frac{(1-x)^{T}(\mathbf{D}-\mathbf{W})(1-x)}{(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}}$$
$$= \frac{(x^{T}(\mathbf{D}-\mathbf{W})x+\mathbf{1}^{T}(\mathbf{D}-\mathbf{W})\mathbf{1})}{k(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}} + \frac{2(1-2k)\mathbf{1}^{T}(\mathbf{D}-\mathbf{W})x}{k(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}}$$

$$b = \frac{k}{1-k},$$
  
Setting  $\boldsymbol{y} = (1 + \boldsymbol{x}) - b(1 - \boldsymbol{x}),$ 

Shi & Malik(1997) show:

$$min_{\boldsymbol{x}}Ncut(\boldsymbol{x}) = min_{\boldsymbol{y}}\frac{\boldsymbol{y}^{T}(\mathbf{D} - \mathbf{W})\boldsymbol{y}}{\boldsymbol{y}^{T}\mathbf{D}\boldsymbol{y}},$$

with the condition  $y(i) \in \{1, -b\}$  and  $y^T \mathbf{D1} = 0$ .

This is Equivalent to:  $\mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{W})\mathbf{D}^{-\frac{1}{2}}z = \lambda z, \quad \mathbf{D}^{-\frac{1}{2}}\mathbf{D}\mathbf{D}^{-\frac{1}{2}}z - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$   $\mathbf{z} = \mathbf{D}^{\frac{1}{2}}y. \qquad \mathbf{I}z - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$ But solutions to above are solutions to:  $\mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$ 



Figure from "Image and video segmentation: the normalised cut framework", by Shi and Malik, copyright IEEE, 1998

#### Ng,Jordan,Weiss, 2002

Given a set of points  $S = \{s_1, \ldots, s_n\}$  in  $\mathbb{R}^l$  that we want to cluster into k subsets:

- 1. Form the affinity matrix  $A \in \mathbb{R}^{n \times n}$  defined by  $A_{ij} = \exp(-||s_i s_j||^2/2\sigma^2)$  if  $i \neq j$ , and  $A_{ii} = 0$ .
- 2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A's *i*-th row, and construct the matrix  $L = D^{-1/2}AD^{-1/2-1}$
- 3. Find  $x_1, x_2, \ldots, x_k$ , the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix  $X = [x_1x_2 \ldots x_k] \in \mathbb{R}^{n \times k}$  by stacking the eigenvectors in columns.
- 4. Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e.  $Y_{ij} = X_{ij} / (\sum_j X_{ij}^2)^{1/2}$ ).
- 5. Treating each row of Y as a point in  $\mathbb{R}^k$ , cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
- 6. Finally, assign the original point  $s_i$  to cluster j if and only if row i of the matrix Y was assigned to cluster j.









F igure from "Normalized cuts and image segmentation," Shi and Malik, copyright IEEE, 2000