Unsupervised Segmentation

Unsupervised Segmentation and Grouping

- Motivation: Many computer vision problems would be easy, except for background interference.
- Unsupervised Segmentation: no training data
- Use: Obtain a compact representation from an image/motion sequence/set of tokens
- Should support application
- Broad theory is absent at present

- Grouping (or clustering)
 - collect together tokens that
 "belong together"
- Fitting
 - associate a model with tokens
 - issues
 - which model?
 - which token goes to which element?
 - how many elements in the model?

General ideas

- Features (tokens)
 - whatever we need to group (pixels, points, surface elements, etc., etc.)
- top down segmentation (model based)
 - features belong together because they lie on the same object.
- bottom up segmentation (image based)
 - features belong together because they are locally coherent
- These two are not mutually exclusive

Why do these features belong together?

Basic ideas of grouping in humans

- Figure-ground discrimination
 - grouping can be seen in terms of allocating some elements to a figure, some to ground
 - impoverished theory

- Gestalt properties
 - elements in a collection of elements can have properties that result from relationships (Muller-Lyer effect)
 - gestaltqualitat
 - A series of factors affect whether elements should be grouped together
 - Gestalt factors

Parallelism

Symmetry

Continuity

Closure

Are Gestalt laws the result of observed regularity in scenes?

Fig. 1. (a) A 1D Markov random field where the nodes represent random variables for positions of contour points. (b) Node A is spatially adjacent to point B, but it is far away from B in the circular neighborhood of (a).

(b)

Collect statistics on local curvature and adjacency for natural contours.

Fig. 5. (a) The histograms of $\kappa(s)$ averaged over 22 animate objects at scale 0 (solid curve), scale 1 (dashed curve), and scale 2 (dash-dotted curve), the horizontal axis is $\kappa(s)$ with unit $dz = \frac{\pi}{(3\times20)}$. (b) The logarithm of curves in (a).

Sampled boundaries from learning probability model.

Fig. 11. Six of the synthesized shapes with curvature histogram matched to animate shapes, $\mu_{\text{syn}}^{(1)} = \mu_{\text{curv}}^{(2)}$. The histograms of these synthesized shapes are shown by the dashed curves in Fig. 12.

Technique: Shot Boundary Detection

- Find the shots in a sequence of video
 - shot boundaries usually result in big differences between succeeding frames
- Strategy:
 - compute interframe distances
 - declare a boundary where these are big

- Possible distances
 - frame differences
 - histogram differences
 - block comparisons
 - edge differences
- Applications:
 - representation for movies, or video sequences
 - find shot boundaries
 - obtain "most representative" frame
 - supports search

Technique: Background Subtraction

- If we know what the background looks like, it is easy to identify "interesting bits"
- Applications
 - Person in an office
 - Tracking cars on a road
 - surveillance

- Approach:
 - use a moving average to estimate background image
 - subtract from current frame
 - large absolute values are interesting pixels
 - trick: use morphological operations to clean up pixels

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together
- Agglomerative clustering
 - attach closest to cluster it is closest to
 - repeat
- Divisive clustering
 - split cluster along best boundary
 - Repeat

- Point-Cluster distance
 - single-link clustering
 - complete-link clustering
 - group-average clustering
- Dendrograms
 - yield a picture of output as clustering process continues

distance

K-Means

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can't do this by search, because there are too many possible allocations.

- Algorithm
 - fix cluster centers; allocate points to closest cluster
 - fix allocation; compute best cluster centers
- x could be any set of features for which we can compute a distance (careful about scaling)

$$\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \left\| x_j - \mu_i \right\|^2 \right\}$$

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

Image

Clusters on color

K-means using color alone, 11 segments

K-means using colour and position, 20 segments

Graph theoretic clustering

- Represent tokens using a weighted graph.
 - affinity matrix
- Cut up this graph to get subgraphs with strong interior links

Image Segmentation as Graph Partitioning

Boundaries of image regions defined by a number of attributes

- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration

Measuring Affinity

Intensity

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_i^2}\right)\left(\left\|I(x) - I(y)\right\|^2\right)\right\}$$

Distance

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_d^2}\right)\left(\|x - y\|^2\right)\right\}$$

Texture

$$aff(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_t^2}\right)\left(\left\|c(x) - c(y)\right\|^2\right)\right\}$$

c(x) denotes a histogram, for instance

Eigenvectors and cuts

- Simplest idea: we want a vector a giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another

Let $w_{ij} = aff(x_i, x_j)$ for pixels $x_i \& x_j$

• We could maximize

$$E = a^T W a$$

• But need the constraint

$$a^{T}a = 1$$

• This is an eigenvalue problem choose the eigenvector of A with largest eigenvalue

> Maximize: $E = a^{T}Wa + \lambda(1 - a^{T}a)$ Set: $\frac{\partial E}{\partial a} = 0$ $= 2Wa - 2\lambda a$ $\Rightarrow Wa = \lambda a$

Example eigenvector

points

More than two segments

- Two options
 - Recursively split each side to get a tree, continuing till the eigenvalues are too small
 - Use the other eigenvectors

Normalized cuts

- Current criterion evaluates within cluster similarity, but not across cluster difference
- Instead, we'd like to maximize the within cluster similarity compared to the across cluster difference
- Write graph as V, one cluster as A and the other as B

$$assoc(A,B) = \sum_{i \in A, j \in B} W(i,j)$$

• Maximize

$$Nassoc(A,B) =$$

$$\left(\frac{assoc(A,A)}{assoc(A,V)}\right) + \left(\frac{assoc(B,B)}{assoc(B,V)}\right)$$

• i.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph

Normalized cuts

- Write a vector y whose elements are 1 if item is in A, -b if it's in B
- Write the matrix of the graph as W, and the matrix which has the row sums of W on its diagonal as D, 1 is the vector with all ones.
- Criterion becomes

$$\min_{y} \left(\frac{y^{T} (D - W) y}{y^{T} D y} \right)$$

• and we have a constraint

 $y^T D1 = 0$

• This is hard to do, because y's values are quantized

Normalized cuts

• Instead, solve the generalized eigenvalue problem

$$\max_{y} (y^{T} (D - W)y) \text{ subject to } (y^{T} Dy = 1)$$

• which gives

$$(D-W)y = \lambda Dy$$

Now look for a quantization threshold that maximises the criterion ---i.e all components of y above that threshold go to one, all below go to b

Given a partition of nodes of a graph, V, into two sets A and B, let \boldsymbol{x} be an $N = |\boldsymbol{V}|$ dimensional indicator vector, $x_i = 1$ if node i is in A, and -1 otherwise. Let $\boldsymbol{d}(i) = \sum_j w(i, j)$, be the total connection from node \boldsymbol{i} to all other nodes. With the definitions \boldsymbol{x} and \boldsymbol{d} we can rewrite Ncut(A, B) as:

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(B, A)}{assoc(B, V)}$$
$$= \frac{\sum(\boldsymbol{x}_i > 0, \boldsymbol{x}_j < 0) - w_{ij} \boldsymbol{x}_i \boldsymbol{x}_j}{\sum \boldsymbol{x}_i > 0} d_i$$
$$+ \frac{\sum(\boldsymbol{x}_i < 0, \boldsymbol{x}_j > 0) - w_{ij} \boldsymbol{x}_i \boldsymbol{x}_j}{\sum \boldsymbol{x}_i < 0} d_i$$

Let **D** be an $N \times N$ diagonal matrix with d on its diagonal, **W** be an $N \times N$ symmetrical matrix with $W(i,j) = w_{ij}$, $k = \frac{\sum_{x_i \ge 0} d_i}{\sum_i d_i}$, and **1** be an $N \times 1$ vector of all ones. Using the fact $\frac{1+x}{2}$ and $\frac{1-x}{2}$ are indicator vectors for $x_i > 0$ and $x_i < 0$ respectively, we can rewrite 4[Ncut(x)] as:

$$= \frac{(1+x)^{T}(\mathbf{D}-\mathbf{W})(1+x)}{k\mathbf{1}^{T}\mathbf{D}\mathbf{1}} + \frac{(1-x)^{T}(\mathbf{D}-\mathbf{W})(1-x)}{(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}}$$
$$= \frac{(x^{T}(\mathbf{D}-\mathbf{W})x+\mathbf{1}^{T}(\mathbf{D}-\mathbf{W})\mathbf{1})}{k(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}} + \frac{2(1-2k)\mathbf{1}^{T}(\mathbf{D}-\mathbf{W})x}{k(1-k)\mathbf{1}^{T}\mathbf{D}\mathbf{1}}$$

$$b = \frac{k}{1-k},$$

Setting $\boldsymbol{y} = (1 + \boldsymbol{x}) - b(1 - \boldsymbol{x}),$

Shi & Malik(1997) show:

$$min_{\boldsymbol{x}}Ncut(\boldsymbol{x}) = min_{\boldsymbol{y}}\frac{\boldsymbol{y}^{T}(\mathbf{D} - \mathbf{W})\boldsymbol{y}}{\boldsymbol{y}^{T}\mathbf{D}\boldsymbol{y}},$$

with the condition $y(i) \in \{1, -b\}$ and $y^T \mathbf{D1} = 0$.

This is Equivalent to: $\mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{W})\mathbf{D}^{-\frac{1}{2}}z = \lambda z, \quad \mathbf{D}^{-\frac{1}{2}}\mathbf{D}\mathbf{D}^{-\frac{1}{2}}z - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$ $\mathbf{z} = \mathbf{D}^{\frac{1}{2}}y. \qquad \mathbf{I}z - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$ But solutions to above are solutions to: $\mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}z = \lambda z$

Figure from "Image and video segmentation: the normalised cut framework", by Shi and Malik, copyright IEEE, 1998

Ng,Jordan,Weiss, 2002

Given a set of points $S = \{s_1, \ldots, s_n\}$ in \mathbb{R}^l that we want to cluster into k subsets:

- 1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp(-||s_i s_j||^2/2\sigma^2)$ if $i \neq j$, and $A_{ii} = 0$.
- 2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A's *i*-th row, and construct the matrix $L = D^{-1/2}AD^{-1/2-1}$
- 3. Find x_1, x_2, \ldots, x_k , the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X = [x_1x_2 \ldots x_k] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.
- 4. Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e. $Y_{ij} = X_{ij} / (\sum_j X_{ij}^2)^{1/2}$).
- 5. Treating each row of Y as a point in \mathbb{R}^k , cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
- 6. Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

F igure from "Normalized cuts and image segmentation," Shi and Malik, copyright IEEE, 2000