Texture

Key issue: representing texture
— Texture based matching
e little is known
— Texture segmentation
e Kkey issue: representing texture
— Texture synthesis
e useful; also gives some insight into quality of representation
— Shape from texture

e cover superficially







Representing textures

Textures are made up of quite
stylised subelements, repeated
in meaningful ways

Representation:
— find the subelements, and
represent their statistics
But what are the subelements,
and how do we find them?
— recall normalized correlation

— find subelements by applying
filters, looking at the
magnitude of the response

What filters?

— experience suggests spots and
oriented bars at a variety of
different scales

— details probably don’t matter
What statistics?

— within reason, the more the
merrier.

— At least, mean and standard
deviation

— better, various conditional
histograms.
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Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.
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bandpass filtered image
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bandpassed representation
1image histogram

Aange 229, 227]
Diirna [394, 598] =

1F

|:| 1 1 | 1 | |
-250 200 -1s00 100 -50 [l 50 oo 150 200 250



Bandpass domain noise image
and histogram
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Noise-corrupted full-freq and bandpass images
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The Gaussian pyramid

Smooth with gaussians, because
— a gaussian®gaussian=another gaussian

Synthesis
— smooth and sample
Analysis
— take the top image

Gaussians are low pass filters, so repn 1s
redundant



GAUSSIAN PYRAMID
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Fig 4. Firsrgix levels of the Ganssian pyramid Tor the "Lady” image The original image, level 0, measures 257 by 257 pixels and each
higher level array is roughly hall the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.
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The computational advantage of pyramids

GAUSSIAN PYRAMID
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Fig 1. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of 2 corresponding image pixel. The value
of cach node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kermel” is
used to generate all levels.
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Fig. 2. The equivalent weighting Tunctions f,x) for nodes in levels 1, 2, 3,
and infinity of the Gaunssian pyramid. Note that axis seales have been
adjusted by factors of 2 to aid comparison Here the parameter @ of the
cenetating kemel 15 04, and the resulting equivalent  weighling
functions closely resemble the Gaussian probability density funcetions,
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Simoncelli and Adelson, in “Subband coding™, Kluwer, 1990.

Analysis section Synthesis section

Figure 4.2: An analysis/synthesis filter bank.



Simoncelli and Adelson, in “Subband coding™, Kluwer, 1990,
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Figure 4.4: Octave band splitting preduced by a four-level pyramid cas-
cade ol a two-band A[S system. The top picture represents the splitting
of the two-band A/S system. Each successive picture shows the effect of
re-applying the system to the lowpass subband (indicated in grey) of the
previous picture. The bottom picture gives the final four-level partition of
the frequency domaim. All frequency axes cover the range from 0 to 7.




The Laplacian Pyramid

e Synthesis

— preserve difference between upsampled Gaussian pyramid level
and Gaussian pyramid level

— band pass filter - each level represents spatial frequencies (largely)
unrepresented at other levels

e Analysis

— reconstruct Gaussian pyramid, take top layer
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Laplacian Pyramid Oriented Pyramid



Oriented pyramids

e Laplacian pyramid is orientation independent

* Apply an oriented filter to determine orientations at each
layer
— by clever filter design, we can simplify synthesis

— this represents image information at a particular scale and
orientation
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Steerable Pyramids

http://www.cis.upenn.edu/~eero/steerpyr.html
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Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
lcv

Laboratory for Computational Vision

“Home | Pecple | Roseerch [Publcatons] Softvare-

Publicly Available Software Packages

« Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing vizual textures. README | Contents | Changelog | Source
code (UNIA/PC, gzip'ed tar file)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

_p « matlabPyrTools - Maflab source code far multi-scale image processing.
Includes tocls for building and manipulating Laplacian pyramids,
OMFANavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convelution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

_... » The Steerable Pyramid, an (approximately) translation- and rotation-invariant
rmulti-scale image decomposition. MatLab (see above) and C
implementations are awvailable.

« Computational Medels of corfical neurons. Macintosh program available.

» EFIC - Efficient Pyramid {\Wavelet) Image Coder. G source code available.

« OBVIUS [Object-Based Vision & Image Understanding System):
README ! Changelog / Doc (225k) f Source Code (2.25M).

« CL-SHELL [Gnu Emacs =-> Commeon Lisp Interface): A
README f Change Log f Source Code (119k).




Simoncelli and Adelson. in “Subband coding™. Kluwer, 1990.
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Figure 4.3 A non-uniformly cascaded analysis/synthesis [lter bank. 36



Filter Kernels

Coarsest sca]ﬂn

Image /

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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Final texture representation

Form an oriented pyramid (or equivalent set of responses
to filters at different scales and orientations).

Square the output

Take statistics of squared responses

e.g. mean of each filter output (are there lots of spots)
std of each filter output
Histogram of responses

mean of one scale conditioned on other scale having a particular
range of values (e.g. are the spots in straight rows?)




Example application: CMU face detector
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Texture synthesis

e Use 1mage as a source of probability model

e Choose pixel values by matching neighbourhood, then
filling in

e Matching process

— look at pixel differences

— count only synthesized pixels
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Figure from Texture Synthesis by Non-parametric Sampling, A. Efros and T.K.
Leung, Proc. Int. Conf. Computer Vision, 1999 copyright 1999, IEEE



Application to 1mage
compression

* (compression 1s about hiding differences

from the true 1mage where you can’t see
them).



Bandwidth (transmission resources) for the
components of the television signal
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Understanding image perception allowed NTSC

to add color to the black and white television

signal (with some, but limited, incompatibility
artifacts). 7
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Figure 6.1

| Contrast sensitivity threshold functions for static luminance gratings

[Y) and isoluminance chromaticity gratings (R/Y B/Y) averaged over
 seven observers.
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RGB to Lab color space

00 [ X 100 [0 0.412453 [] 0.357580[] 0.189423 J[JJ [ R ]
OO0 [ Y1 = [[]0.212671[] 0.715160[] 0.072169 ] * [ G ]
00 [ z 100 [0 0.019334[] 0.119193[] 0.950227 1 [0 [ B ]-

CIE 1976 L*a*b* is based directly on CIE XYZ and is an attampt to linearize the
perceptibility of color differences. The non-linear relations for L*, a*, and b* are
intended to mimic the logarithmic response of the eye. Coloring information is
referred to the color of the white point of the system, subscript n.

L* = 116 * (Y/Yn)1/3 - 16[][J[] for ¥/¥n > 0.008856
L* = 903.3 * Y/Yn[|[JIUOOOOO0 [ otherwise

a* = 500 * ( £(X/Xn) - £(Y/Yn) )

b* = 200 * ( £(Y/Yn) - £(%Z/2Zn) )

[l where £(t) = tui/3[]] [J[] for t > 0.008856
N000000000000 £¢e) = 7.787 * £ + 16/116[][J[] otherwise



Lab components




Blurring the L Lab component

original

processed



Blurring the b Lab component
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Compression

Figure 2. Example cocfficient magnitudes of a
wavelet decomposition. Shown are absolute values
of subband cocfficients in a 4-level separable wavelet
decomposition of the “Einstan™ image. Note that
high-magnitude cocfficients at adjacent scales tend
to be located m the same spatial pogitions.
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PSNR | 35.77 dB 30.03 dB | 27.49 dB

2K (0.031 bpp)
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Mr. Dupont 1s a professional wine taster. When given a French wine,
he will 1dentify 1t with probability 0.9 correctly as French, and will
mistake 1t for a Californian wine with probability 0.1.

When given a Californian wine, he will identify 1t with probability
0.8 correctly as Californian, and will mistake 1t for a French wine
with probability 0.2.

Suppose that Mr. Dupont 1s given ten unlabelled glasses of wine,
three with French and seven with Californian wines. He randomly
picks a glass, tries the wine, and solemnly says: "French". What 1s
the probability that the wine he tasted was Californian?



Mr. Dupont 1s a professional wine taster. When given a French wine,
he will 1dentify 1t with probability 0.9 correctly as French, and will
mistake 1t for a Californian wine with probability 0.1.

When given a Californian wine, he will identify 1t with probability
0.8 correctly as Californian, and will mistake 1t for a French wine
with probability 0.2.

Suppose that Mr. Dupont 1s given ten unlabelled glasses of wine,
three with French and seven with Californian wines. He randomly
picks a glass, tries the wine, and solemnly says: "French". What 1s
the probability that the wine he tasted was Californian?

K P(CIR) = P(RAC) p( C )/P(RS)

i I = 0.1%0.7/2, P(RE [w)p(w)

= 0.1%0.7/(0.9%0.3+0.1%0.7) = 0.21
P(F)=0.3; P(C) =0.7; =0.1*0.7/0.34 =0.21
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Bayes theorem

P(x, y) = P(x]y) P(y)
SO
P(x|y) P(y) = P(y|x) P(x)
and
P(x]y) = P(y|x) P(x) / P(y)
The parameters }-m|T x T T Ctmstant W.I.L.

: Likelihood o
want to estimate . . parameters X.
function

What you observe Prior probability



“You must choose,
but Choose Wisely”

Given only probabilities, can we minimize the number of errors we
make?

Given:

responses R., categories C,, current category €, data X

To Minimize error:
— Decide R, if P(C,Ix) >P(C, Ix) for all izk
P(x1C)PC)>PxIC,)PC,)
P(xI1C)/ PxIC,)> P(C,)/P(C.)
P(xI1C)/PIC, )>T
Optimal classifications always involve hard boundaries




Horse Segmentation




P(horse) = 0.04
P(background) = 0.96

P(redlhorse)
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Now evaluate
H p(r; Lhorse)/ p(r; | background)

j=1:Nmeasurements
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