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Missing variable problems

• In many vision problems, if some variables were known
the maximum likelihood inference problem would be easy
– fitting; if we knew which line each token came from, it would be

easy to determine line parameters
– segmentation; if we knew the segment each pixel came from, it

would be easy to determine the segment parameters
– fundamental matrix estimation; if we knew which feature

corresponded to which, it would be easy to determine the
fundamental matrix

– etc.
• This sort of thing happens in statistics, too
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For Independent data samples
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Missing variables - strategy

• We have a problem with
parameters, missing variables

• This suggests:
• Iterate until convergence

– replace missing variable with
expected values, given fixed
values of parameters

– fix missing variables, choose
parameters to maximise
likelihood given fixed values
of missing variables

• e.g., iterate till convergence
– allocate each point to a line

with a weight, which is the
probability of the point given
the line

– refit lines to the weighted set
of points

• Converges to local extremum
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Finite Mixtures

P(x) = Si=1:3 a(i) gi(x; q)
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Expection on
Indicator
variables
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Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content
Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE

Segmentation with EM
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Lines and robustness
• We have one line, and n points
• Some come from the line, some

from “noise”
• This is a mixture model:

• We wish to determine
– line parameters
– p(comes from line)

† 

P point | line and noise params( ) = P point | line( )P comes from line( )+

P point | noise( )P comes from noise( )
= P point | line( )l + P point | noise( )(1- l)
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Estimating the mixture model

• Introduce a set of hidden
variables, d, one for each point.
They are one when the point is
on the line, and zero when off.

• If these are known, the negative
log-likelihood becomes (the
line’s parameters are f, c):

• Here K is a normalising
constant, kn is the noise
intensity (we’ll choose this
later).

† 
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Substituting for delta

• We shall substitute the expected
value of d, for a given q

• recall q=(f, c, l)
• E(d_i)=1. P(d_i=1|q)+0....

• Notice that if kn is small and
positive, then if distance is
small, this value is close to 1
and if it is large, close to zero

† 

P di = 1|q, xi( ) =
P xi | di = 1,q( )P di = 1( )

P xi |d i = 1,q( )P di = 1( )+ P xi | di = 0,q( )P d i = 0( )

=
exp -1

2s 2 xi cosf + yi sinj + c[ ]2( )l
exp -1

2s 2 xi cosf + yi sinj + c[ ]2( )l + exp -kn( ) 1- l( )
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Algorithm for line fitting

• Obtain some start point

• Now compute d’s using formula
above

• Now compute maximum
likelihood estimate of

–  f, c come from fitting to
weighted points

–  l comes by counting

• Iterate to convergence

† 

q 0( ) = f 0( ),c 0( ) ,l 0( )( )

† 

q 1( )
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The expected values of the deltas at the maximum
(notice the one value close to zero).
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Closeup of the fit
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Choosing parameters

• What about the noise parameter, and the sigma for the
line?
– several methods

• from first principles knowledge of the problem (seldom really
possible)

• play around with a few examples and choose (usually quite
effective, as precise choice doesn’t matter much)

– notice that if kn is large, this says that points very seldom come
from noise, however far from the line they lie

• usually biases the fit, by pushing outliers into the line
• rule of thumb; its better to fit to the better fitting points, within

reason; if this is hard to do, then the model could be a problem
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Other examples

• Segmentation
– a segment is a gaussian that

emits feature vectors (which
could contain colour; or colour
and position; or colour, texture
and position).

– segment parameters are mean
and (perhaps) covariance

– if we knew which segment
each point belonged to,
estimating these parameters
would be easy

– rest is on same lines as fitting
line

• Fitting multiple lines
– rather like fitting one line,

except there are more hidden
variables

– easiest is to encode as an array
of hidden variables, which
represent a table with a one
where the i’th point comes
from the j’th line, zeros
otherwise

– rest is on same lines as above
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Issues with EM

• Local maxima
– can be a serious nuisance in some problems
– no guarantee that we have reached the “right” maximum

• Starting
– k means to cluster the points is often a good idea
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Local maximum
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which is an excellent fit to some points
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and the deltas for this maximum
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A dataset that is well fitted by four lines
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Result of EM fitting, with one line (or at least, 
one available local maximum).



Computer Vision - A Modern Approach
Set:  Probability in segmentation

Slides by D.A. Forsyth

Result of EM fitting, with two lines (or at least, 
one available local maximum).
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Seven lines can produce a rather logical answer
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Motion segmentation with EM

• Model image pair (or video
sequence) as consisting of
regions of parametric motion
– affine motion is popular

• Now we need to
– determine which pixels belong

to which region
– estimate parameters

• Likelihood
– assume

• Straightforward missing
variable problem, rest is
calculation

† 
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Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, c 1994, IEEE
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Grey level shows region no. with highest probability

Segments and motion fields associated with them
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, c 1994, IEEE
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If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, c 1994, IEEE
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Some generalities

• Many, but not all problems that
can be attacked with EM can
also be attacked with RANSAC
– need to be able to get a

parameter estimate with a
manageably small number of
random choices.

– RANSAC is usually better

• Didn’t present in the most
general form
– in the general form, the

likelihood may not be a linear
function of the missing
variables

– in this case, one takes an
expectation of the likelihood,
rather than substituting
expected values of missing
variables
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Model Selection

• We wish to choose a model to
fit to data
– e.g. is it a line or a circle?
– e.g is this a perspective or

orthographic camera?
– e.g. is there an aeroplane there

or is it noise?

• Issue
– In general, models with more

parameters will fit a dataset
better, but are poorer at
prediction

– This means we can’t simply
look at the negative log-
likelihood (or fitting error)
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Top is not necessarily a better
fit than bottom
(actually, almost always worse)
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We can discount the fitting error with some term in the number
of parameters in the model.
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Discounts

• AIC (an information criterion)
– choose model with smallest

value of

– p is the number of parameters

• BIC (Bayes information
criterion)
– choose model with smallest

value of

– N is the number of data points
• Minimum description length

– same criterion as BIC, but
derived in a completely
different way

† 

-2L D;q*( )+ p log N

† 

-2L D;q*( )+ 2 p
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Cross-validation

• Split data set into two pieces, fit
to one, and compute negative
log-likelihood on the other

• Average over multiple different
splits

• Choose the model with the
smallest value of this average

• The difference in averages for
two different models is an
estimate of the difference in KL
divergence of the models from
the source of the data
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Model averaging

• Very often, it is smarter to use
multiple models for prediction
than just one

• e.g. motion capture data
– there are a small number of

schemes that are used to put
markers on the body

– given we know the scheme S
and the measurements D, we
can estimate the configuration
of the body X

• We want

• If it is obvious what the scheme
is from the data, then averaging
makes little difference

• If it isn’t, then not averaging
underestimates the variance of
X --- we think we have a more
precise estimate than we do.

† 

P X | D( ) = P X | S1, D( )P S1 | D( )+

P X | S2, D( )P S2 | D( ) +

P X | S3, D( )P S3 | D( )



Computer Vision - A Modern Approach
Set:  Probability in segmentation

Slides by D.A. Forsyth

Learning as Model fitting
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Model Fitting, Learning

• Model:  Mapping between observations and world
properties.
– P(o,s)
– Parametric:

P(o,s;ø)   where ø are parameters that need to be fit (learned)
from observations (data)

– Density Estimation:
Learn P(o,s) from examples.  E.g. Histogram, KDE
Mixture of parametric densities.
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What’s the problem?

• Two sets of hidden parameters
– Goal, find argmax(s) P(s|o,ø)
– But P(s|o;ø) depends on ø, thus different ø, different inference of s.
– Optimize ø?   Yes, but optimal ø only good for one s.
– Need to optimize both at the same time.
– One Solution:  EM algorithm
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Learning templates for categories

Assume a set of labelled examples for stimuli
from categories  C = 1, 2, etc

Stimuli are fixed images in gaussian noise

s = I1 + N

Then labelled examples can be used to learn a
parametric model

P(s|C) = N(m,K).  Let K = s2I.  How do we
estimate m across trials?
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EM
algorithm

Normal maximum likelihood

What to do with 
Y unknown?

Iterate,  
   1) set value for        average over Y
   2)     maximize    , use as next value

1)

2)
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Density Est: Mixture of Densities

e.g. q = { m, s }
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Mixture Model Applications
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Motion Estimation



Computer Vision - A Modern Approach
Set:  Probability in segmentation

Slides by D.A. Forsyth

Motion Estimation
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Motion Estimation


