Missing variable problems

* In many vision problems, if some variables were known
the maximum likelihood inference problem would be easy

— fitting; if we knew which line each token came from, it would be
easy to determine line parameters

— segmentation; if we knew the segment each pixel came from, it
would be easy to determine the segment parameters

— fundamental matrix estimation; if we knew which feature
corresponded to which, it would be easy to determine the
fundamental matrix

— etc.

e This sort of thing happens in statistics, too

Computer Vision - A Modern Approach
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Bayes theorem

P(x, y) = P(x]y) P(y)
SO

P(x]y) P(y) = P(y[x) P(x)
and

P(xly) = PT(YX) P(x) / f;(y)

The parameters you o e Constant w.r.t.
C Likelihood
want to estimate S parameters X.
function

What you observe Prior probability

Computer Vision - A Modern Approach
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Missing variable problems

General case:

— Complete space X (e.g., pixel values and labels)

— Incomplete space Y (e.g., pixel values)

— 1 X->Y

— Parameters U (e.g., mixing weights cluster mean,
covar.)

Complete log-likelithood: For Independent data samples
Le(2; u) =log{ | | pe(zs; w)}
i

= Zlﬂg el u))



Missing variables - strategy

We have a problem with e e.g., iterate till convergence
parameters, missing variables — allocate each point to a line

This suggests:

Iterate until convergence

— replace missing variable with
expected values, given fixed
values of parameters

— fix missing variables, choose
parameters to maximise
likelihood given fixed values
of missing variables

with a weight, which is the
probability of the point given
the line

refit lines to the weighted set
of points

e Converges to local extremum

Computer Vision - A Modern Approach
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EM for Mixture models

If log-likelihood is linear in missing variables we can
replace missing variables with expectations. E.g.,

g

p(y) = E mp(ylar) E E ziy log ply,; ar)
l jcobservations ‘=1

mixture model complete data log-likelihood

|. (E-step) estimate complete data (e.g, z’s) using
previous parameters

2. (M-step) maximize complete log-likelihood

using estimated complete data

't = argmax L. (#°;

- U)

e ;

= argmax L[y, Z°];u)
Slides by D.A. Forsyth



0.35

0.3

0.25

n.z

015

01

0.05

Finite Mixtures

P(x) = 2,_, 5 a(i) g(x; 6)

3Tern Finite Mixture

Set: Probability in segmentzition
Slides by D.A. Forsyth




Color segmentation with EM

» At each pixel in an image, we compute a d-

dimensional feature vector x, which encapsulates
position, colour and texture information.

 Pixel 1s generated by one of G segments, each
Gaussian, chosen with probability 7:

p(x) = E n(x|0;)m

Set: Probability in segmentation
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Color segmentation with EM

Parameters include mixing weights and means/covars:

& = (o1, .., ag01,...,8) O = (1, 20)
yielding
g
“r’r||;1"|(;)1 — Z f.”t‘ﬂ?‘*ﬂ(i |f) )
=1
with

1 1 L
(Qrid/2 dEt(E-Wlf-B exp {_ 9 (;E o }-L-E)* E;: l':xm — M ]}

A

p(E|0,) =



Color segmentation with EM

J'-"'4|.|gﬂll‘“'.hl]'l 17.1: Colour and texture segmenlation with EM

Choose a number of sepments
ﬂ" "fIHI-['ll':'-'- A BT ”':‘ .“-'llll[;'f'll'l- rr.-'-'l-ll"'l:, 1B ;JF![' .“Ft’,frlﬂfll-_.
containing one element per pixel. These support, maps
will contain the welpht associating a pixel with a segment
Initialize the support maps by either:
Estimating sepment parameters from small
blocks of pixels, and then computing weights
nsing the E-step;
ar
Landomly allocating values to the support maps.
Until converrencs
Undate the support maps with an E-Stop
Usdats the seprment parasrmetors with an M-Step
erd




Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Choose a number of sepments
Cronstruet a set of support maps, one per segment,
containing one elemert per pixel. These support, maps
will contain the welpht associating & pixel with a serment
Initialize the support maps by either:
Estimating sepment parameters from small
blocks of pixels, and then computine weights
using the E-step Initialize
or
Eandomly allocating values to the support maps.

Until converpencs
Update the support maps with an E Step
Upndate the sepment parsmeters with an M-Step

end




The E-step: The I, m’th element of T is one it the {’th pixel comes from the
mrth blob, and zero otherwise. This means that
EXp@Cthn on E( I, ) = LF[I’th pixel comes from the mth blob)
Indicator 0. F(I'th pixel does not come from the m'th blob)

Varlables = 'DI::P'..I L;i:ﬂ—e] cormmes fromn Bhe m’hh blob)
Assuming that the parameters are for the s'th iteration are ©%5) we have;

(=1 Al s

- . ﬁtrt;-r.-,(_{.:‘. '-"Ir? :l

THF‘. [z - . 1
2o—=1 ¥ P TS )

(keeping in mind that crL rmeans the value of @, on the §th iteration!),

A ]gt‘ﬂ‘“’.]]]‘ﬂ 17.2: Colour and texture segmen L3 ton with EM: - the F—Hl.{-‘rp

For each pixe! location !

For each sspment m

Tnsert 5 o |5 520y

10 pixel .DEEtlDI’_ L in the support map m
ernd Add the support map values o ootain
rr“i]
TL—I &y, i”m(Té =
abd r:l.v.de the velue in locstion | in esch support map by this term

and




E-step

Estimate support maps:

a:é?pmtm.amﬂ”)
Zk} 1% Ffa(m-ﬂgtj )

;-{:-m\;r:;? @_’Sﬁ )

1

J'-“.]gl'ﬂ‘ﬁ'.hl'l'l 17.2: Colour and texture segmen 13 Tion with EM: - the F—H|.E|.'l

For each pixe! locstion !

For each sspment ™

Insert J:Lj Ty (3

10 pixel location ¢ in the support map m

end Add the support map values 1o ootain
.—fi]

|ff ]}

TL—I oy, f‘m(l _
and f:l.v.de the wluﬁ in locztion { in each support map by this term

end




M-step

Update mean’s, covar’s, and mixing coef.’s using
support map:

Algorithim 17.3: Colour and texture segmentation with EM: - the M-step

bFor each seprment m
Form new values of the sepment parameters
using the expressions:

o2t L5 olmlay, ©0))

-

T‘\.
L

[ =
{a+1) Xl |y @ j:'
|*J ry T‘x ] ?‘IIL"T |"T" J_.I\EJ :|

sl _ Pagey Pl @0 (- D) (e )T

o T - —
m ’ =
b L Il r.--:lI ,.-:,'::": <)

L ii=

Wheare p[m|x; LJ,r | iz the value
in the m’th pr:mrt map or pixel loeation |




Segmentation with EM

s

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content
Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE
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LLines and robustness

« We have one line, and n points  * We wish to determine

e Some come from the line, some — line parameters

from “noise” — p(comes from line)
e This is a mixture model:
P(point | line and noise params) = P(point | line )P(comes from line) +
P(point | noise )P(comes from noise)
= P(point | line)A + P(point I noise )(1 — 1)

Computer Vision - A Modern Approach
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EM for line estimation

* We have a problem with ¢ e.g.

parameters, missing _
variables

[terate until convergence:

— replace missing variable
with expected values, given
fixed values of parameters

— fix missing variables,

™

allocate each point to a line
with a weight, which is the
probability of the point
given the line

refit lines to the weighted
set of points

» Converges to local

choose parameters to extremum
maximise likelthood given + Somewhat more general

fixed values of missing
variables

form 1s available

VLI ULVL Y 1oL 43 AVIVUMLVLLL LAppLUAvLL
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Estimating the mixture model

e Introduce a set of hidden e Here K is a normalising
variables, 0, one for each point. constant, kn 1s the noise
They are one when the point is intensity (we’ll choose this
on the line, and zero when off. later).

e If these are known, the negative
log-likelihood becomes (the
line’s parameters are ¢, c):

/5./(xicos¢+yisin¢+c)2\ +\
0.(x0)= 3| | 200 ) |4k
| (1_6i)kn

Computer Vision - A Modern Approach
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Substituting for delta

* We shall substitute the expected ¢ Notice that if kn is small and

value of 0, for a given 0 positive, then if distance is
e recall 0=(¢, c, A) small, this value is close to 1
e E@O_i)=1.P(5_i=116)+0 and if it 1s large, close to zero

P(x;18, =1,0)P(5, =1)
P(x,18,=1,0)P(5, = 1)+ P(x,18, = 0,0)P(5, = 0)

exp(‘yzc72 [xl. COos¢+ y,sing + c]2 )A
i exp(—%gz [ x,cos¢ +y, sing + C]Z)A +exp(—k, J1-A)

P(s,=110,x,) =

Computer Vision - A Modern Approach
Set: Probability in segmentation
Slides by D.A. Forsyth



Algorithm for line fitting

Obtain some start point e [terate to convergence
00 — (¢<0)’C(0),;L(0>)

Now compute 0’s using formula
above

Now compute maximum
likelihood estimate of (1)

— ¢, c come from fitting to
weighted points

— A\ comes by counting

Computer Vision - A Modern Approach
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The expected values of the deltas at the maximum
(notice the one value close to zero).

L -

L' T L1
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&
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g . * g g

09 -

0.4+ -

0.7E -

0.6+ 4

IR 4

04+ 4

03 4

02+ 4
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Closeup of the fit
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Choosing parameters

 What about the noise parameter, and the sigma for the
line?
— several methods

» from first principles knowledge of the problem (seldom really
possible)

e play around with a few examples and choose (usually quite
effective, as precise choice doesn’t matter much)

— notice that if kn is large, this says that points very seldom come
from noise, however far from the line they lie

e usually biases the fit, by pushing outliers into the line

* rule of thumb; its better to fit to the better fitting points, within
reason,; if this is hard to do, then the model could be a problem

Computer Vision - A Modern Approach
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Other examples

* Segmentation * Fitting multiple lines
— asegment is a gaussian that _

emits feature vectors (which
could contain colour; or colour
and position; or colour, texture
and position).

segment parameters are mean
and (perhaps) covariance

if we knew which segment
each point belonged to,
estimating these parameters
would be easy

rest 1s on same lines as fitting
line

rather like fitting one line,
except there are more hidden
variables

easiest is to encode as an array
of hidden variables, which
represent a table with a one
where the 1’th point comes
from the j’th line, zeros
otherwise

rest 1s on same lines as above

Computer Vision - A Modern Approach
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Issues with EM

e Local maxima

— can be a serious nuisance in some problems

— no guarantee that we have reached the “right” maximum
e Starting

— k means to cluster the points is often a good idea

Computer Vision - A Modern Approach
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Local maximum

=10}k

-12F

_'Iq. 1 1 1 1 1 1 1
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which is an excellent fit to some points

15

05k

-1.5¢

* #

-1.5
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A dataset that 1s well fitted by four lines

b . . . .
S5k % # 4
4+ * * .
Ik # * 4
2k E * -
1 - #* ¥ # ¥
0 + # # +
-1 ! ! ! !
-1 0 1 2 3 4 3 ]
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Result of EM fitting, with one line (or at least,
sone available local maximum).
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Result of EM fitting, with two lines (or at least,
sone available local maximum).
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Seven lines can produce a rather logical answer
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Motion segmentation with EM

Model image pair (or video » Likelihood
sequence) as consisting of _ assume
regions of parametric motion
— affine motion is popular I(x, y,t) = I(x +v.,y+ vy,t + 1)

Vx| _ (“ b)(x) N Ly +noise
v, c d)\y t, . o
e Straightforward missing
variable problem, rest is
Now we need to calculation

— determine which pixels belong
to which region

— estimate parameters

Computer Vision - A Modern Approach
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Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE
Computer Vision - A Modern Approach
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Grey level shows region no. with highest probability

Segments and motion fields associated with them

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE

Transactions on Image Processing, 1994, ¢ 1994, IEEE
Computer Vision - A Modern Approach
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If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE
Computer Vision - A Modern Approach
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Some generalities

e Many, but not all problems that ¢ Didn’t present in the most
can be attacked with EM can general form
also be attacked with RANSAC — in the general form, the

— need to be able to get a
parameter estimate with a
manageably small number of

random choices. _

— RANSAC is usually better

likelihood may not be a linear
function of the missing
variables

in this case, one takes an
expectation of the likelihood,
rather than substituting
expected values of missing
variables

Computer Vision - A Modern Approach
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Model Selection

e  We wish to choose a model to o [ssue

fit to data

— e.g.is it a line or a circle?

— e.g is this a perspective or
orthographic camera?

— e.g. 1s there an aeroplane there

or 1s it noise?

In general, models with more
parameters will fit a dataset
better, but are poorer at
prediction

This means we can’t simply
look at the negative log-
likelihood (or fitting error)

Computer Vision - A Modern Approach
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Top 1s not necessarily a better
fit than bottom
(actually, almost always worse)
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Negative log-likelihood (or fitting error)

Number of parameters in model
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Operating peint

Negative log-likelihood (or fitting error)

Mumber of parameters in model

We can discount the fitting error with some term in the number
of parameters in the model.

Computer Vision - A Modern Approach
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Discounts

AIC (an information criterion) e BIC (Bayes information
— choose model with smallest criterion)
value of — choose model with smallest
—2L(D' 0 ) + 2[? value of
—2L(D;0* ) + plogN

— p is the number of parameters
— N is the number of data points

e Minimum description length

— same criterion as BIC, but
derived in a completely
different way

Computer Vision - A Modern Approach
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Cross-validation

Split data set into two pieces, fit ® The difference in averages for

to one, and compute negative two different models is an
log-likelihood on the other estimate of the difference in KL
Average over multiple different divergence of the models from
splits the source of the data

Choose the model with the
smallest value of this average

Computer Vision - A Modern Approach
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Model averaging

Very often, it is smarter to use e We want

multiple models for prediction P( X| D) _ P( XIS D) P( S | D) +
= 1 1

than just one

e.g. motion capture data P(X 1S,, D)P(52 | D) +
— there are a small number of
schemes that are used to put P(X | 53, D)P(S3 | D)
@arkers on the body e [Ifitis obvious what the scheme
— given we know the scheme S is from the data, then averaging
and the measurements D, we makes little difference
can estimate the configuration

If it isn’t, then not averaging
underestimates the variance of
X --- we think we have a more
precise estimate than we do.

of the body X

Computer Vision - A Modern Approach
Set: Probability in segmentation
Slides by D.A. Forsyth



Learning as Model fitting
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Model Fitting, Learning

 Model: Mapping between observations and world
properties.
— P(0,9)
— Parametric:

P(o,s;6) where ¢ are parameters that need to be fit (learned)
from observations (data)

— Density Estimation:
Learn P(o,s) from examples. E.g. Histogram, KDE
Mixture of parametric densities.

Computer Vision - A Modern Approach
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What’s the problem?

Two sets of hidden parameters
— Goal, find argmax(s) P(slo,g)
— But P(slo;@) depends on @, thus different @, different inference of s.
— Optimize ¢? Yes, but optimal ¢ only good for one s.
— Need to optimize both at the same time.

— One Solution: EM algorithm

Computer Vision - A Modern Approach
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Learning templates for categories

Assume a set of labelled examples for stimuli
from categories C =1, 2, etc

Stimuli are fixed images 1n gaussian noise
s=I11+N

Then labelled examples can be used to learn a
parametric model

P(sIC) = N(u,K). Let K = 0’I. How do we
estimate w across trials?

Computer Vision - A Modern Approach
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(D) p()

p(u|D) =

|

pulx;,x,,....x,)

[ p(D|w)p() du

o [ el ) po),
k=1

4

- p

FIGURE 3.2. Bayesian learning of the mean of normal distributio?Pr°2h
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EM
algorithm

Normal maximum likelihood
plX|O) = HP(&IG} L{O]X).

©* = argmax L(O]X).
©
p(X,Y|©) Y unknown?

What to do with
Iterate,

1) setvalue for @. average over Y
2) maximize @ use as next value

Q0,001 = E [log p(x, Y|@)| ¥, 6]

B [log ¥, Y16} | ¥, 001] = f 108 p(X,¥]0)f(y|¥,01)dy.

ye

2) 0™ = argmax Q(O,00 1)),

Modern Approach
n segmentation
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Density Est: Mixture of Densities

o

p(x|©) = > aipi(x]6;)

i—=1

6={'ﬂlli-":ﬂ'ﬂﬁgi:l---:nﬂﬂf} eg.0={u o}

N N M
log(L(©]X)) = log _]_Il.ﬂ(milaﬁl =) log (21 a;p; (ﬁlﬂj))

N N
= glﬂg (Plaslys) P(y)) = glﬂg (e (0. ))
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Mixture Model Applications
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Motion Estimation

QN
AN

4

Figure 1: a A simple image sequende which causes prab-
lems for traditional motion estimation A!EJFLLIIHJF. b Least
souares optical low shown as an arrow plol ¢ Least squares
aplical flow horizontal component. « Least squares optical
flow vertical component,
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Motion Estimation
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Motion Estimation

Segmentation -~ Flow

AN

N 7 BEE

F'l%l.ll‘{-! &1 The two interpretations arrived at by Lhe classi-
cal EM algorithm randonly on alternate runs. Top: The
mcorrect interpretation. Segmentation on the lelt and mo-
ton field on the mght. With the exception of the corners
Lhis inlerpretation explains all the data. Bottoln: The
correct interpretation. In both cases all untexturaed regions
are ambiguans,
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