Projected image of a cube

Classical Calibration

Know 3D coords, 2D coords

Find projection matrix

11 unknowns (up to scale)
2 equations per point
(eliminate d)

6 points is sufficient

Camera Calibration

Take a known set of points.

Typically 3 orthogonal planes.

Treat a point in the object as the World origin

Points x1, x2, x3,

Project to y1,y2,y3

Least Square Estimation: Idea

Least Square Estimation

$$\vec{y}^{pred} = A\vec{x}$$
 prediction

$$E = \prod_{j=1}^{m} (y_j^{measured} \prod y_j^{pred})^2 \qquad Error$$

$$E = \prod_{j=1}^{m} (y_j^{measured} \prod_{i=1}^{n} a_{ij} x_i)^2 \quad Error$$

$$E = (\vec{y}^{meas} \square A\vec{x})^t (\vec{y}^{meas} \square A\vec{x})$$
 Error Matrix form

$$\min_{x} E \quad \Box \quad \frac{\partial E}{\partial x} = 0 \quad \Box \quad \Box 2A^{t}(\vec{y}^{meas} \Box A\vec{x}) = 0$$

In general, y is a matrix of measurements, and x is a matrix of matched predictors

Converting a Matrix into a vector for Least squares...

$$Y = X^t \begin{bmatrix} \vec{a}_1^t & \cdots & \vec{a}_n^t \end{bmatrix}^t$$

Real Calibration Procedure

$$u_i = \frac{m_1^t \vec{p}_i}{m_3^t \vec{p}_i} \square \qquad m_1^t \vec{p}_i \square \left(m_3^t \vec{p}_i \right) u_i = 0 \qquad \square \qquad \left(m_1^t \square m_3^t u_i \right) \cdot \vec{p}_i = 0$$

$$u_{i} = \frac{m_{1}^{t} \vec{p}_{i}}{m_{3}^{t} \vec{p}_{i}} \square \qquad m_{1}^{t} \vec{p}_{i} \square \left(m_{3}^{t} \vec{p}_{i} \right) u_{i} = 0 \qquad \square \qquad \left(m_{1}^{t} \square m_{3}^{t} u_{i} \right) \cdot \vec{p}_{i} = 0$$

$$v_{i} = \frac{m_{2}^{t} \vec{p}_{i}}{m_{3}^{t} \vec{p}_{i}} \square \qquad m_{2}^{t} \vec{p}_{i} \square \left(m_{3}^{t} \vec{p}_{i} \right) v_{i} = 0 \qquad \square \qquad \left(m_{2}^{t} \square m_{3}^{t} v_{i} \right) \cdot \vec{p}_{i} = 0$$

Collecting all corresponding points into a matrix

To minimize the error, find

$$\square \vec{m} = 0\vec{m} \quad \square \quad \vec{m} = Null(\square)$$

Reshape \vec{m} into M, and can extract parameters from M

Multi-view geometry

- How can we recover information about the structure of an object?
 - Take multiple views of the object.
 - Each image supplies a constraint on the location of points in space
 - Intersecting the constraints provides a solution

From Pinhole to Picture Plane

Understanding Homogeneous Image Coordinates

Constraint supplied by one view

Projective ambiguity

Constraint supplied by two views

Relations between image coordinates

Given coordinates in one image, and the tranformation Between cameras, T = [R t], what are the image coordinates In the other camera's image.

Epipolar Geometry

The fundamental **geometric** relationship between two perspective cameras.

The **epipole**: is the *point* of intersection of the line joining the optical centres---the *baseline*---with the image plane. The epipole is the image in one camera of the optical centre of the other camera.

Definitions

Epipolar Example

Converging cameras

Essential Matrix: Relating between image coordinates

camera coordinate systems, related by a rotation \mathbf{R} and a translation \mathbf{T} :

$$x' = \begin{bmatrix} R & t \\ 000 & 1 \end{bmatrix} x$$

$$\mathbf{a} imes \mathbf{v} = \left[egin{array}{l} a_y v_z - a_z v_y \ a_z v_x - a_x v_z \ a_x v_y - a_y v_x \end{array}
ight]$$

$$x' = \begin{bmatrix} R & t \\ 000 & 1 \end{bmatrix} x$$

$$O'x' \bullet \begin{bmatrix} O & T & O & O \\ O & T & O & O \end{bmatrix} = 0$$

$$x' \bullet (\vec{t} \mid Rx) = 0$$

$$x' \bullet (\mathcal{E} x) = 0$$
$$x' \mathcal{E} x = 0$$

$$\boldsymbol{\mathcal{E}} = \begin{bmatrix} 0 & \mathbf{I} t_z & t_y \\ \mathbf{I} t_z & 0 & \mathbf{I} t_x \\ \mathbf{I} t_y & t_x & 0 \end{bmatrix}$$

What does the Essential matrix do?

It represents the normal to the epipolar line in the other image

$$n = \mathcal{E} x$$

The normal defines a line in image 2:

$$x'_{on\ epipolar\ line} \ \Box \ n \cdot x' = 0$$

$$n_1 x_1 + n_2 x_2 + n_3 1 = 0$$

$$(y = mx + b) \square b = \square n_3, \quad m = \square \frac{n_1}{n_2}$$

What if cameras are uncalibrated? Fundamental Matrix

Choose world coordinates as Camera 1.

Then the extrinsic parameters for camera 2 are just ${\bf R}$ and ${\bf t}$ However, intrinsic parameters for both cameras are unknown.

Let C_1 and C_2 denote the matrices of intrinsic parameters. Then the pixel coordinates measured are not appropriate for the Essential matrix.

Correcting for this distortion creates a new matrix: the Fundamental Matrix.

$$x'_{measured} = C_2 x' \qquad x_{measured} = C_1 x$$

$$(x')^{\dagger} \mathcal{E} x = 0 \quad \left[\quad \left(C_2^{\Box 1} x'_{measured} \right)^{\dagger} \mathcal{E} \left(C_1^{\Box 1} x_{measured} \right) = 0 \right]$$

$$(x'_{measured})^{\dagger} \mathcal{F} x_{measured} = 0$$

$$\mathcal{F} = C_2^{\Box t} \mathcal{E} C_1^{\Box 1} \qquad C = \begin{bmatrix} -f \cdot s_u & 0 & u_0 \\ 0 & -f \cdot s_v & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Computing the fundamental Matrix

Computing : I Number of Correspondences Given perfect image points (no noise) in general position. Each point correspondence generates one constraint on

$$\begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1' & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \end{bmatrix} = 0$$