Parametric (Global) Motion
Models

Global motion models offer

— more constrained solutions than smoothness (Horn-
Schunck)

— Integration over a larger area than a translation-only
model can accommodate (Lucas-Kanade)



rarameiric (\Ulonal) viotuon
Models

2D Models.

(Translation)

Affine

Quadratic

Planar projective transform (Homography)

3D Models:

Instantaneous camera motion models
Homography+epipole

Plane+Parallax



* Transformations/warping of image

E(h)=2 [I(x+h)- [,®]

x MR

Translations h =




Generalizations

EA,h) =2 [I(Ax+h)- I,0)]

x MR

Affine:

A =

p—

e

a b
c d

—

—r

h =




Generalization

Affine: A=




Example: Affine Motion

u(x,v)=a, +a,x+a,y

vix,v)=a, +tax+a,y

Substituting into the B.C. Equation:

[.-u+l -v+1, =0

[ (a,+a,x+a,y)+/1 (a,+ax+a,y)+1 =0

Each pixel provides 1 linear constraint in 6 global unknowns
(minimum 6 pixels necessary)

Least Square Minimization (over all pixels):

Err(a) = z [1_1_(0:] t+a,x+a,y)+1 (a,+tax+a,y)+ 1,]



u(x, y)=as+a,x+ a,y

i

v, y)=azta x+acy

4

I(x+u(x; a), t-1) = I(x, 1)

(Brighiness Constancy Assumption)



Rigid pose estimation

* Head pose model: 6 DOF

).
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Optic tlow for rigid motion

« 3-D velocity:

: AT
V=T +QxP=T-PQ=|] —P{ }

P=[p|
(skew-zym.)

vl [t oo 0o oz =Y




Optic tlow for rigid motion

v, T
* Rigid Motion (forsmall v). |  |=H| O
V

¥V L _

] o0 o 7z =Y

S0 = | _
H=| | o 1 0 -7 0 X |
| {' lIII‘ — ¥ I"’I:"'* |
- | - 0 0 1 Y =X
Ferspective projection

of 3-0D velocity

3-D velocity at point =



Direct Rigid Motion Estimation

* Brightness Change Constraint

[(x,y,t) =1(x+v ,y+v 1+1)

dl dl dl
—Vv. +—v +—=0
dx =~ dy ~ df

p—

cdl| |droar | s
dt |

—

dx dy | v

.



Direct Rigid Motion Estimation

* Brightness Change Constraint

dl) _dldl Y
dt dx dv || v

* Rigid Motion Mode
V. [ T
=H
L'I ._Q_.
1 0 0 0 Z =Y
f 0 —x|1
H = . —10 1 0 —-Z 0 X
0O f —vl|Z
‘ _D 0 1 Yy =X 0




Hstimation

Direct Motion |

* One equation per pixel:

[_fﬂ}: dldlf/ 0 =xi1f,
dt dx dv |0 [ —v|Z

0
1
0

0
0
I

0
A
y

()

First, convert X,Y from screen coordinates to

pixel coordinates....




Direct Motion Estimation

* One equation per pixel:

o 1 00 0 Z -2
— X

el bt S 8w
@l a4 P50 00 w2y o —xzvp 0

« Still hard!
« 7 unknown; assume surface shape...
— Negahdaripour & Horn - Planar
— Black and Yacoob - Aftine
— Basu and Pentland; Bregler and Malik - Ellipsoidal

— Essa et al. - Polygonal approximation



“Direct Depth™

Use real-time stereo!
* Gives Z directly; no approximate model needed

* Express Direct Constraint on Depth Gradient

L(x,y,t)y=Z(x+v_,y+v ,t+1)—v.

dz dz d/
V. +—Vv +—=v_=0
dc =~ dy ° dt




Direct Depth

Combined with rigid motion model:
* Orthographic

| | | 100 0 Z -y]
—dl/ dt di Jdx  dl/dy 0 T
= | o 01 0 -2 0 x
—dZ | dt dZ/dx dZ/dyv -1 €
] 01 y -x 0
* Perspective
| | 1 00 0 Z =)
|i—.:H _.-[rs]:[_,rf;f fdx  fdl idy —ydl /dy—xdI .-':e’.r]l . 0 ) f {[]
—dZldt] | fd4ide fdZ dy - “1o 0 1 V2 f —xZf 0 “

One system per pixel, same T,L. Solve with QR or SVD.



Application

Track users’ head gaze for hands-free pointing...




The three main issues in tracking

e Prediction: we have seen yg,...,y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=1vg,.- -, Yic1 =Y, 1)

e Data association: Some of the measurements obtained from the ¢-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyg,..., Y i1 =
Y. ) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X,;|Yo =1vyq,..., Y = y.).



Tracking

* Very general model:

— We assume there are moving objects, which have an underlying
state X

— There are measurements Y, some of which are functions of this
state

— There 1s a clock
 at each tick, the state changes
 at each tick, we get a new observation
 Examples

— object is ball, state is 3D position+velocity, measurements are
stereo pairs

— object is person, state is body configuration, measurements are
frames, clock is in camera (30 fps)



Three main steps

e Prediction: we have seen yg,...,y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=1vg,.- -, Yic1 =Y, 1)

e Data association: Some of the measurements obtained from the ¢-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyg,..., Y i1 =
Y. ) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X,;|Yo =1vyq,..., Y = y.).



Simplifying Assumptions
e Only the immediate past matters: formally, we require
P(X;| Xy,.... X)) = P(X,;| X, 1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we're clever about interpreting X;
as we shall show in the next section.

e Measurements depend only on the current state: we assume that Y;
1s conditionally independent of all other measurements given X ;. This means
that

P(Y,Y;,...Yi|X;)=PY:|X)P(Y;,...,Yi|X:)

Again, this isn’t a particularly restrictive or controversial assumption, but it
yields important simplifications.



Assumptions allow recursive
solutions

Decompose estimation problem
—part that depends on new observation
—part that can be computed from previous history

E.g., running average:

s P

i=1:t z L:(z-1) i=1:(1-1)
r—1 1
; azl"'t)’r

a, =

Now in form that allows recursive application



Tracking as induction

e Assume data association 1s done

— a dangerous assumption--assumes good
segmentation

e Do correction for the 0’th frame

e Assume we have corrected estimate for 1’th
frame

— show we can do prediction for 1+1, correction
for 1+1



Base case

Firstly, we assume that we have P(X ()

P(y,| Xo)P(Xo)

P("JU)
P(yy| Xo)P(Xo)

P(Xo|Yo=1vyy) =

J P(yo| Xo)P(X0)dXo
x P(yo|Xo)P(Xo)



Induction step

Prediction

Prediction involves representing

P(Xilyg. - Yi_1)

Our independence assumptions make it possible to write



Induction step

Correction

Correction involves obtaining a representation of

Our independence assumptions make it possible to write

p(-X'i: Yo - "?yi,)
Plyg,---,9;)
P(y;| X yo, .-y 1) P( Xy, -y )P (Yo, -, Y1)

I)(X'-!'-|y[]: . '.‘:yi) —

I)(y[]:"'tyi)
lj(y ?"':y-;rj— )
= P(y;| X;)P(Xilygs - Y1) P(; y)l
(IR I - ¥}
Ij(yi‘X“i)IJ(X‘i|yOa'--:yi—l)
fl’(y,i\X?;)P(X,i\yo, s Y )d X




Linear dynamic models

e Use notation ~ to mean
“has the pdf of”’, N(a, b)
1s a normal distribution

with mean a and State Dynamics

covariance b. N(D S )
e Then a linear dynamic
model has the form y,=N (MZXZ 2, )

Measurement Dynamics

e This 1s much, much more
general than it looks, and
extremely powerful



Examples

* Drifting points

— we assume that the new position of the point is the old
one, plus noise.

— For the measurement model, we may not need to
observe the whole state of the object

e ¢.g. a point moving in 3D, at the 3k’th tick we see x, 3k+1’th
tick we see y, 3k+2’th tick we see z

e 1n this case, we can still make decent estimates of all three
coordinates at each tick.
— This property, which does not apply to every model, 1s
called Observability



Examples

Points moving with constant velocity
Periodic motion
Etc.

Points moving with constant acceleration



Points moving with constant

velocity
e We have

u =u_, +Av,_ +¢,

Vi=V,+¢G;

— (the Greek letters denote noise terms)
e Stack (u, v) into a single state vector

u I At\(u .
= + noise
0o 10,

— which 1s the form we had above



Points moving with constant
acceleration

* Wehave , -y +Amv_ +¢
v.=v._, +Afa,_ +¢,

a;=a, +§

— (the Greek letters denote noise terms)
e Stack (u, v) into a single state vector

(u\ (1 At O0)\[u)

vli =10 1 Atl|v + noise
a). \0 0 1)\a/

— which 1s the form we had above
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The Kalman Filter

 Key ideas:
— Linear models interact uniquely well with
Gaussian noise - make the prior Gaussian,

everything else Gaussian and the calculations
are easy

— Gaussians are really easy to represent --- once
you know the mean and covariance, you’'re
done



The Kalman Filter

i

Time Update Measurement Update
("Predict’™) ("Correct™)

N



The Kalman Filter in 1D
 Dynamic Model

. ¥
r; ~ N(dixi_1,07)

. yi ~ N(mjz;, oF
e Notation g G,
mean of P(X;|yo,...,yi—1)as X, Predicted mean
—
Corrected mean — meanof P(X;|yg,...,y;) as A,

the standard deviation of P(X; yo,...,yi—1) asa,

of P(X;lyo, ... Ui) as o



The Kalman Filter

7N

Time Update
("Predict”)

Measurement Update
(“Correct’™)

N



Prediction for 1D Kalman filter

¥

. . g O N [rfr-.'r';_-_. ey :I
* The new state 1s obtained by

— multiplying old state by known constant

— adding zero-mean noise

» Therefore, predicted mean for new state 1s

— constant times mean for old state

 (Old variance 1s normal random variable

— varlance 1s multiplied by square of constant
— and variance of noise 1s added.

X, = dif:r_L (o, )2 = c:ri + {dgr:?j_]}g



Dyvnamic Model:
xi ~ Nidiri_1,04)
yi ~ N(mizi, om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

T diT;
_ , + 2
T \ O, + dir” )

Update Equations: Correction

—_—— 7 e fa—2
T T Om i\ a; )
“ o, +mila; )?

2 =2
|5r+ Cr:"”.-l'ﬂ-i' !
; —




The Kalman Filter

TN

Time Update
{"Predict”)

Measurement Update
("Correct™)

N




Correction for 1D Kalman filter

We have
P(X:lyo.. ) — PEFJX{JP{XH?JH;- o Yio1)
| Plys| Xi)P(X|yo, - - ., yim1 )X,
o Ply| X)) P(Xilyo, .y 1)

., ( (@ — ;.a}f)
glz:p,v) =exp | —

2v

P(Xilyo, - ui) x glyiimi Xs, 00 )g(Xi: X, (07 )7)
— g{ﬂlixi; Yis Cr':fflf }gln'Xi fr,_1 [Jt._ 'i}
2

f ' J'rt.f~ / X s —"
— Q{X?L g . i"f}. ]Q[XpXi W T :I-}}

mi  m;



Dvnamic Model:

x; ~ Nldizi 1,04,

Y ~ | 1o, Tm,; )

Start Assumptions: T; and o, are known

Update Equations:

Update Equations:

Prediction

T, diT;
_ , + 3
T \/ oa, + dier; )

Clorrection

- 3 o (12

T Ti Tm MY\ a; )

“ ol +mia; )®
2 =2

|5r+ Cr:"”.-l'gf I

; —




Correction for 1D Kalman filter

e Pattern match to 1dentities given in book
— basically, guess the integrals, get:

| 'IE ﬂ.ﬂ_ —|—ﬂ11y1|ﬂ' |_
. T =
e Notice: “ o2, +mi(o;)?

— 1f measurement noise 1s small

. I
we rely mainly on the measurer

G"— It'_T |—:'
G_J _ kg !
if 1t’s large, mainly on the d ( e T3 (07)° ')
prediction




In higher dimensions,
derivation follows the
same lines, but isn’t as
easy. Expressions
here.

Dynamic Model:
@; _lﬂ'l.-rl_ﬂimg_l_. "',:-j I
Ty, -'H""r'.-'HiEir?'::ln_ !

Start Assumptions: T, and »; are known
Update Equations: Prediction

Update Equations: Correction

~ — T "— T . —1
ﬁ..-j ""'E .'HE' ..' !}'E .-'wz' T T".-;;q.

E:- T, + K, yz“-""”lifz‘__

Y = (Td — KM, ¥

i
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Smoothing

e Idea

— We don’t have the best estimate of state - what about
the future?

— Run two filters, one moving forward, the other
backward in time.

— Now combine state estimates

e The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter

— so we’ve already done the equations









18

16



n-D

Generalization to n-D is straightforward but more complex.



n-D

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
CPredict™) (“Correct™




n-D Prediction

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
CPredict™) (“Correct™

Prediction:

« Multiply estimate at prior time with forward model:
— ._+
. —1Ihe
» Propagate covariance through model and add new noise:

S =%4 + Dt Dy



n-D Correction

Generalization to n-D is straightforward but more complex.

Time Update Measurement Update
CPredict™) (“Correct™

« Update a priori estimate with measurement to form «
posteriori

Correction:



n-D correction
Find linear filter on innovations

®, —x, - Ky, - Mz, |

T 1

which minimizes a posteriori error covariance:

(e

K i1s the Kalman Gain matrix. A solution 1s

o= B T s ME 4 8]



Kalman Gain Matrix

-z, + Ky - Mz

T 1

i = 5 ME ME; MT 48,

As measurement becomes more reliable, K weights residual
more heavily,

lim K, =M "

2 =)

=m

As prior covariance approaches (. measurements are ignored:

im K, =0

2 —l



Dvnamic Model:

a€n; .-TI}JEI;'_l. 1‘,5 I

I N{Mz,, M )

Start Assumptions: T, and *; are Known
Update Equations: Prediction
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox

+ MSE of filtered estimate is 4.9: of smoothed estimate. 3.2.

« Not only is the smoothed estimate better, but we know that it is better.,
as 1llustrated by the smaller uncertainty ellipses

* Note how the smoothed ellipses are larger at the ends, because these
points have seen less data.

* Also, note how rapidly the filtered ellipses reach their steady-state
(“Ricatti™) values.

[Fgure from hitpodwascal mitedw'-merphy Softvware o almankalman. himl]
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Online demo

* On-line 1D simulation
* Linear and non-linear
« Variable dynamics

[figure from Welsh and Bishop 2001 ]



Online demo

The Kalman Filter Learning Tool tool simulates a relatively simple
example setup involving estimation of the water level in a tank.

Water dynamics. The user can independently choose both the actual and
modeled dynamics of the water. The choices include no motion (the
default), filling, sloshing, or both filling and sloshing.

Measurement model. The user can also choose the method of
measurement. The measurement model choices include two options
that are commonly used (for example) in toilet tanks: a vertical level
(linear) float-type sensor, or an angular (non-linear) float-type sensor.
A diagram depicting the two case is shown below. The user is also
allowed to increase or decrease (by a factor of 10) the magnitude of the
random linear or angular measurement noise.



Online demo

foat

Wariel

d),
[
7 .
measurement =L measurement 7 = B
Level ( Linear) Angle (Non-Linear)

[figure from http:www cs unc.edw/'~welch/kalman/kftool indesx htinl |



Online demo

http://www.cs.unc.edu/~welch/kalman/kftool/KalmanFilterApplet.html



Abrupt changes
What 1t environment 1s sometimes unpredictable?
Do people move with constant velocity?

Test several models of assumed dynamics, use the
best.



Multiple model filters

Test several models of assumed dynamics

Actual
meas.
seq.

Z*

[figure from Welsh and Bishop 2001 ]



Resources

« Kalman filter homepage

http://www.cs.unc.edu/~welch/kalman/

* Kevin Murphy’s Matlab toolbox:

http://www.ai.mit.edu/~murphyk/Software/Kalman/k
alman.html



Data Association

* Nearest neighbours

— choose the measurement with highest
probability given predicted state

— popular, but can lead to catastrophe

e Probabilistic Data Association

— combine measurements, weighting by
probability given predicted state

— gate using predicted state
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