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The three main issues in tracking



Tracking
• Very general model:

– We assume there are moving objects, which have an underlying
state X

– There are measurements Y, some of which are functions of this
state

– There is a clock
• at each tick, the state changes
• at each tick, we get a new observation

• Examples
– object is ball, state is 3D position+velocity, measurements are

stereo pairs
– object is person, state is body configuration, measurements are

frames, clock is in camera (30 fps)



Three main steps



Simplifying Assumptions



Assumptions allow recursive
solutions

Decompose estimation problem
–part that depends on new observation
–part that can be computed from previous history

E.g., running average:

Now in form that allows recursive application
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Tracking as induction

• Assume data association is done
– a dangerous assumption--assumes good

segmentation
• Do correction for the 0’th frame
• Assume we have corrected estimate for i’th

frame
– show we can do prediction for i+1, correction

for i+1



Base case



Induction step
Given



Induction step



Linear dynamic models
• Use notation ~ to mean

“has the pdf of”,  N(a, b)
is a normal distribution
with mean a and
covariance b.

• Then a linear dynamic
model has the form

• This is much, much more
general than it looks, and
extremely powerful

† 

yi = N Mixi ;Smi( )

† 

xi = N Di-1xi-1;Sdi( )
State Dynamics

Measurement Dynamics



Examples

• Drifting points
– we assume that the new position of the point is the old

one, plus noise.
– For the measurement model, we may not need to

observe the whole state of the object
• e.g. a point moving in 3D, at the 3k’th tick we see x, 3k+1’th

tick we see y, 3k+2’th tick we see z
• in this case, we can still make decent estimates of all three

coordinates at each tick.
– This property, which does not apply to every model, is

called Observability



Examples

• Points moving with constant velocity
• Periodic motion
• Etc.
• Points moving with constant acceleration



Points moving with constant
velocity

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above
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Points moving with constant
acceleration

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above
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ui = ui-1 + Dtvi-1 + e i

vi = vi-1 + Dtai-1 +V i

ai = ai-1 + xi
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The Kalman Filter

• Key ideas:
– Linear models interact uniquely well with

Gaussian noise - make the prior Gaussian,
everything else Gaussian and the calculations
are easy

– Gaussians are really easy to represent --- once
you know the mean and covariance, you’re
done





The Kalman Filter in 1D
• Dynamic Model

• Notation
Predicted mean

Corrected mean















Correction for 1D Kalman filter
• Pattern match to identities given in book

– basically, guess the integrals, get:

• Notice:
– if measurement noise is small,
we rely mainly on the measurement,
if it’s large, mainly on the
prediction



In higher dimensions,
derivation follows the
same lines, but isn’t as
easy.  Expressions
here.











Smoothing

• Idea
– We don’t have the best estimate of state - what about

the future?
– Run two filters, one moving forward, the other

backward in time.
– Now combine state estimates

• The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter

– so we’ve already done the equations











































Data Association

• Nearest neighbours
– choose the measurement with highest

probability given predicted state
– popular, but can lead to catastrophe

• Probabilistic Data Association
– combine measurements, weighting by

probability given predicted state
– gate using predicted state










