
Image processing



Image operations

• Operations on an image
– Linear filtering
– Non-linear filtering
– Transformations
– Noise removal
– Segmentation



Linear Filters

• General process:
– Form new image whose pixels

are a weighted sum of original
pixel values, using the same set
of weights at each point.

• Properties
– Output is a linear function of

the input
– Output is a shift-invariant

function of the input (i.e. shift
the input image two pixels to
the left, the output is shifted
two pixels to the left)

• Example: smoothing by
averaging
– form the average of pixels in a

neighbourhood
• Example: smoothing with a

Gaussian
– form a weighted average of

pixels in a neighbourhood
• Example:  finding a derivative

– form a weighted average of
pixels in a neighbourhood



Convolution

• Represent these weights as an
image, H

• H is usually called the kernel
• Operation is called convolution
• Properties:

• Convolution is commutative.

• Convolution is associative.

• Convolution is distributive.

• Result is:

• Notice the order of indices
– all examples can be put in this

form
– it’s a result of the derivation

expressing any shift-invariant
linear operator as a
convolution.

† 

Rij = Hi-u, j-vFuv
u,v
Â



Example: Smoothing by Averaging



Smoothing with a Gaussian

• Smoothing with an average
actually doesn’t compare at all
well with a defocussed lens
– Most obvious difference is that

a single point of light viewed
in a defocussed lens looks like
a fuzzy blob; but the averaging
process would give a little
square.

• A Gaussian gives a good model of
a fuzzy blob

† 

For a filter size N by M,
Rij = HuvFi-u, j-v

v=1:M
Â

u=1:N
Â
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An Isotropic Gaussian
• The picture shows a smoothing

kernel proportional to

(which is a reasonable model of a
circularly symmetric fuzzy
blob)
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Smoothing with a Gaussian



Differentiation and convolution

• Recall

• Now this is linear and shift
invariant, so must be the result
of a convolution.

• We could approximate this as

This is a convolutio: ( but it’s not a
very good way to do things, as
we shall see)
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Finite differences



Noise

• Simplest noise model
– independent stationary additive

Gaussian noise
– the noise value at each pixel is

given by an independent draw
from the same normal
probability distribution

• Issues
– this model allows noise values

that could be greater than
maximum camera output or
less than zero

– for small standard deviations,
this isn’t too much of a
problem - it’s a fairly good
model

– independence may not be
justified (e.g. damage to lens)

– may not be stationary (e.g.
thermal gradients in the ccd)

For an image F,
the measured value G:

† 

Gu,v = Fu,v + nu,v
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sigma=1



sigma=16



Finite differences and noise

• Finite difference filters respond
strongly to noise
– obvious reason: image noise

results in pixels that look very
different from their neighbours

• Generally, the larger the noise
the stronger the response

• What is to be done?
– intuitively, most pixels in

images look quite a lot like
their neighbours

– this is true even at an edge;
along the edge they’re similar,
across the edge they’re not

– suggests that smoothing the
image should help, by forcing
pixels different to their
neighbours (=noise pixels?) to
look more like neighbours



Finite differences responding to noise

Increasing noise ->
(this is zero mean additive gaussian noise)



The response of a linear filter to noise
• Do only stationary independent additive Gaussian noise with zero

mean (non-zero mean is easily dealt with)
• Generalized Average (Mean):

– output is a weighted sum of inputs
– so we want mean of a weighted sum of zero mean normal random

variables
– must be zero

† 

m = wixii=1

N
Â wi =1

i=1

N
Â

Ri, j = wi-u, j-vGu,vu,vÂ = wi-u, j-v Fu,v + nu,v( )
u,vÂ

Ri, j = wi-u, j-vFu,v + wi-u, j-vnu,vu,vÂu,vÂ
Ri, j = ˆ F u,v + mu,v
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nÆ
D

N(m,s 2)
1

2ps
2
e-

1

2s 2 x-m( )2



Computer Vision - A Modern Approach
Set:  Linear Filters

Slides by D.A. Forsyth

Response linear filter to noise

† 
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• Variance:
– recall

• variance of a sum of random variables
is sum of their variances

• variance of constant times random
variable is constant^2 times variance

– then if s is noise variance and kernel is w,
variance of response is

† 

Properties of sums of Gaussian random variables
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Filter responses are correlated

• over scales similar to the scale of the filter
• Filtered noise is sometimes useful

– looks like some natural textures, can be used to simulate fire, etc.









Smoothing reduces noise

• Generally expect pixels to “be
like” their neighbours
– surfaces turn slowly
– relatively few reflectance

changes
• Generally expect noise

processes to be independent
from pixel to pixel

• Implies that smoothing
suppresses noise, for
appropriate noise models

• Scale
– the parameter in the symmetric

Gaussian
– as this parameter goes up,

more pixels are involved in the
average

– and the image gets more
blurred

– and noise is more effectively
suppressed



The effects of smoothing 
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of 
an image of gaussian noise.



Gradients and edges

• Points of sharp change in an
image are interesting:
– change in reflectance
– change in object
– change in illumination
– noise

• Sometimes called edge points

• General strategy
– determine image gradient

– now mark points where
gradient magnitude is
particularly large wrt
neighbours (ideally, curves of
such points).



There are three major issues:
   1) The gradient magnitude at different scales is different; which should
       we choose?
   2) The gradient magnitude is large along thick trail; how
        do we identify the significant points?
   3) How do we link the relevant points up into curves?



Smoothing and Differentiation

• Issue:  noise
– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of Gaussian filter

• because differentiation is convolution, and convolution is
associative



The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels


