Image processing



Image operations

e Operations on an image
— Linear filtering
— Non-linear filtering
— Transformations
— Noise removal

— Segmentation



[.inear Filters

General process:

— Form new image whose pixels
are a weighted sum of original
pixel values, using the same set
of weights at each point.

Properties

— Output is a linear function of
the input

— Output is a shift-invariant
function of the input (i.e. shift
the input image two pixels to
the left, the output is shifted
two pixels to the left)

Example: smoothing by
averaging
— form the average of pixels in a
neighbourhood

Example: smoothing with a
Gaussian

— form a weighted average of
pixels in a neighbourhood

Example: finding a derivative

— form a weighted average of
pixels in a neighbourhood



Convolution

e Represent these weights as an e Result is:
image, H
e His usually called the kernel
. y . Rij = EHi—u,j—vFuv
e Operation is called convolution o=y

«  Properties:

«  Convolution is commutative.

c=a@b=h@ a Notice the order of indices

— all examples can be put in this

- Convolution is associative. form
c=aR (b@c)=(a@b)Bc=a@ b@ ¢ — 1t’s a result of the derivation
expressing any shift-invariant
¢ COI’]V0|UtI0n is distributive. linear Operator as a

c=a > (b+d)={a@b)+{a&d) convolution.



Example: Smoothing by Averaging




Smoothing with a Gaussian

e Smoothing with an average
actually doesn’t compare at all
well with a defocussed lens

— Most obvious difference is that
a single point of light viewed
in a defocussed lens looks like
a fuzzy blob; but the averaging
process would give a little
square.

For a filter size N by M,
e A Gaussian gives a good model of
Rij = 2 z HMVE_ 4 j—v a fuzzy blob

u=1:N v=1:M




An Isotropic Gaussian

e The picture shows a smoothing
kernel proportional to
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(which is a reasonable model of a
circularly symmetric fuzzy

blob)




Smoothing with a Gaussian
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Differentiation and convolution

Recall

flx+ey) flxy)
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Now this is linear and shift
invariant, so must be the result

&

of a convolution.
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* We could approximate this as

o fl00)- £(5,)
0x Ax

This is a convolutio: ( but it’s not a
very good way to do things, as
we shall see)
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Finite differences

V2

L




Noise

e Simplest noise model

— 1independent stationary additive
Gaussian noise

— the noise value at each pixel is
given by an independent draw
from the same normal
probability distribution

For an image F,
the measured value G:

G v=Fu,v+nu,v

u,

| -

D
n—>N(u,0°) =

2o

Issues

this model allows noise values
that could be greater than
maximum camera output or
less than zero

for small standard deviations,
this 1sn’t too much of a
problem - it’s a fairly good
model

independence may not be
justified (e.g. damage to lens)

may not be stationary (e.g.
thermal gradients in the ccd)



sigma=1




sigma=16




Finite differences and noise

Finite difference filters respond ¢ What is to be done?

strongly to noise — intuitively, most pixels in
— obvious reason: image noise images look quite a lot like
results in pixels that look very their neighbours
different from their neighbours — this is true even at an edge;
Generally, the larger the noise along the edge they’re similar,

the stronger the response across the edge they’re not

— suggests that smoothing the
image should help, by forcing
pixels different to their
neighbours (=noise pixels?) to
look more like neighbours



Finite differences responding to noise

1117/ 4117411/ 4

Increasing noise ->
(this 1s zero mean additive gaussian noise)



The response of a linear filter to noise

Do only stationary independent additive Gaussian noise with zero
mean (non-zero mean is easily dealt with)
Generalized Average (Mean):

— output is a weighted sum of inputs

— so we want mean of a weighted sum of zero mean normal random
variables

— must be zero

N N 1
=Fuv+nuv u Ei=1 bl i=1 '
2
n—>N(u,o")
1 (x M)2 Ri,j - zuvwl—u ]—vGuv - Euvwl_” ]_V(F + N
1 T\ ’ )
20
2 e Ri,j = wl—u ]—vFuv + wl—u Jj=v uy
2O - u,v u,v
R .=F



Response linear filter to noise

Properties of sums of Gaussian random variables
1
v S

i=1:N
1 1 1 Varlz i 'Vn”"’]
Varﬁzni =N—EE[nf]=Nl§vof _ E E[W2 5 ]
u,v

i=l:N i=1:N i—u,j—vnu,v

K

e Variance:

2 2
— recall = E w._ -_VE[I’luv]
. . u’v 2 J ’
e variance of a sum of random variables 5 5
1s sum of their variances = E w,. j—vG
u,v ’

e variance of constant times random 5 5
variable is constant?2 times variance =0 E Wi j-v
u,v ’

— then if o 1s noise variance and kernel 1s w,
variance of response is
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Filter responses are correlated

e over scales similar to the scale of the filter

e Filtered noise 1s sometimes useful

— Jooks like some natural textures, can be used to simulate fire, etc.












Smoothing reduces noise

Generally expect pixels to “be
like” their neighbours

— surfaces turn slowly

— relatively few reflectance

changes

Generally expect noise
processes to be independent
from pixel to pixel

Implies that smoothing
suppresses noise, for
appropriate noise models

Scale

the parameter in the symmetric
Gaussian

as this parameter goes up,
more pixels are involved in the
average

and the image gets more
blurred

and noise i1s more effectively
suppressed



no
smoothing

o=1 pixel

0=2 pixels

The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of

an image of gaussian noise.



Gradients and edges

e Points of sharp change in an * General strategy
image are interesting: — determine image gradient
— change in reflectance
— change in object — now mark points where
— change in illumination gradient magnitude is
_ noise particularly large wrt

neighbours (ideally, curves of

* Sometimes called edge points such points).



There are three major issues:
1) The gradient magnitude at different scales is different; which should
we choose?
2) The gradient magnitude is large along thick trail; how
do we identify the significant points?
3) How do we link the relevant points up into curves?



Smoothing and Differentiation

e Issue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?
— actually, no - we can use a derivative of Gaussian filter

e because differentiation is convolution, and convolution is
associative




1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.



