
Load up the images and produce point matches. Use the zoom feature to produce better
matches. Type help collect_point_matches for more info.

im1 = imread('shed1.jpg');
im2 = imread('shed2.jpg');
[x1, x2, tri_pts] = collect_point_matches(im1, im2)

Now make x1 & x2 into homogeneous vectors by adding columns of ones.

1) Implementing the Normalized 8-Point Algorithm
Now we have a set of point correspondences we are ready to calculate the fundamental
matrix. As mentioned in Forsyth & Ponce (pg. 220), computing the fundamental matrix
directly behaves rather poorly. Hartley showed this was primarily due to poor scaling,
and rescaling improves things substantially. Rescaling involves:

Normalize each set of image points (left and right separately) so their mean is zero and
their root mean squared distance from the origin is sqrt(2).

†

Tnorm =

2
R 0 - 2

R mx

0 2
R - 2

R my

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

where R =
1
N

xi - mx()2
+ yi - my()

2()i=1

N
Â

and mx = 1
N

xi
i=1

N

Â my = 1
N

yi
i=1

N

Â

Write a function determines the homogeneous transformation to perform this
normalization on any set of 2D homogeneous points, so that

% x_norm = T_norm*X
%
% defines an x_norm with a mean of 0 and rms
% (root mean squared) distance from the origin
% of sqrt(2).

Normalize x1 and x2.

Now estimate the fundamental matrix F from normalized points.

We want to find the fundamental matrix F that relates the location of a point x1 in image
1 with its location x2 in image 2.
Writing

†

x2
t F x1 = 0 F =

f11 f12 f13

f21 f22 f23

f31 f32 f33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Rewrite as a dot product for each point:

†

r q ⋅
r
f = u2u1 u2v1 u2 v2u1 v2v1 v2 u1 v1 1[]

f11

f12

f13

f21

f22

f23

f31

f32

f33

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

Form the above left-hand product q for each of the N matches and stack them into one
large matrix A. Solve for f using [U,S,V]=svd (A), where f is the last column in V.
Reshape f into F.
Enforce Singularity
The fundamental matrix is a 3x3 matrix of rank 2, therefore it has singular eigenvalues. It is
unlikely your matrix obeys this. Enforce singularity by
[U,S,V] = svd(F);
S(3,3) = 0;
Fn = U*S*V’

Because we normalized the points, this Fn is not the right Fn. The correct Fn is given by:
Fn = T_norm_2’*Fn*T_norm_1

If things went well, points in one image will specify an epipolar line in the other. View
them using: epipolar_viewer(Fn,im1, im2) and check how good your points are.

2) Stereo reconstruction
These cameras are calibrated. The intrinsic parameter matrices are in the file C1_C2.mat.
Use these to compute the Essential matrix via:

†

C2
t FC1 = E

Recall E has the extrinsic parameters between the two cameras, and these can be
extracted from:

e.g. the svd of E, and the rotation matrix R and translation vectors are given by:

†

R = UWV t or R = UW tV t

W =

0 -1 0
1 0 0
0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

†

r
t = u3 or

r
t = -u3

†

E = USV t

which results in a four way ambiguity. Use these results to compute R and t.
Then the projection matrices can be written:
M1 = C1*[eye(3) [0 0 0]’]
M2 = C2*[R t] (with four possibilities)

Now for each point, solve for its x,y,z coordinates using the method outlined in class.
You will get a 4-D homogeneous vector. Divide all the coordinates by the 4th to get the
x,y,z coordinates.

Reproject the points to see which of the four possibilities is correct. In addition, the
reprojection will tell you something about how good your reconstruction is.

