Filters and Edges









Zebra convolved with Leopard




Bracewell’s pictorial dictionary of Fourier
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Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978




Fourier transform of convolution
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Analysis of our simple filters
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Sampling in 1D takes a continuous function and replaces it with
vector of values, consisting of the function’s values at a set of
sample points. We'll assume that these sample points are on a
regular grid. and can place one at each integer for convenience.




Sampling in 2D does the same thing. only in 2D. We’ll assume that
these sample points are on a regular grid, and can place one at each

integer point for convenience.
A




A continuous model for a
sampled function

We want to be able to
approximate integrals
sensibly

Leads to
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The Fourier transform of a
sampled signal
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Aliasing

* (Can’t shrink an i1mage by taking every second
pixel
» If we do, characteristic errors appear
— In the next few slides
— Typically, small phenomena look bigger; fast
phenomena can look slower

— Common phenomenon
* Wagon wheels rolling the wrong way in movies
* Checkerboards misrepresented in ray tracing
 Striped shirts look funny on colour television



Resample the
checkerboard by taking
one sample at each circle.
In the case of the top left
board, new representation
Is reasonable.

Top right also yields a
reasonable representation.
Bottom left is all black
(dubious) and bottom
right has checks that are
too big.




Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer



Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next: bottom row
shows the magnitude spectrum of these images.
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Sampling with smoothing. Top row shows the images. We
get the next image by smoothing the image with a Gaussian with sigma | pixel,
then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.
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Sampling with smoothing. Top row shows the images. We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next: bottom row
shows the magnitude spectrum of these images.
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Fourier transform magnitude
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Masking out the fundamental and
harmonics from periodic pillars
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Edge Detection as a signal detection problem

Figure 2.4 A typical image (left) and the ground truth segmentation (right). courtesy of K. Bowyer at
U. South Florida.

Goal: find meaningful intensity boundaries.
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Simplest Model: (Canny)
Edge(x) =a U(x) + n(x)

U(x)

x=0

Convolve image with U and find points with high
magnitude. Choose value by comparing with a
threshold determined by the noise model.



Frobabiity densky
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Fundamental limits on edge detection
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Figure 2.5 Empirical distributions for a gradient filter response on boundaries (left) and off boundaries
(right).



Figure 2.6 The edge estimated on the glove image by ML with the filter at scale 0 (left), filter at
scale 1 (centre), and filter with scales 0,1,2.4 (right). Observe that ML significantly overestimates

the number of edges in this image.

Need to take into account base edge rate.

Prelerior probabilly




Smoothing and Ditferentiation
e [ssue: noise

— smooth before differentiation
— two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of
Gaussian filter

e because differentiation 1s convolution, and
convolution 1s associative




There are three major issues:
1) The gradient magnitude at different scales is different; which should
we choose?
2) The gradient magnitude is large along thick trail; how
do we identify the significant points?
3) How do we link the relevant points up into curves?



1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.



Computing Edges via the gradient



We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point 1s the maximum, and where is the
next one?



Non-maximum
suppression

At q, we have a
maximum if the
value is larger
than those at
both p and atr.
Interpolate to
get these
values.




Predicting
the next
edge point

Assume the
marked point 1s an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
I Or S).




