
Edge Detection

Computer Vision
P. Schrater

Spring 2003

Simplest Model: (Canny)

Edge(x) = a U(x) + n(x)

U(x)

x=0

Convolve image with U and find points with high
magnitude. Choose value by comparing with a
threshold determined by the noise model.

?

Probability of
a filter
response on
an edge

Probability of
a filter
response off
an edge

Fundamental limits on edge detection

Need to take into account base edge rate.

Smoothing and Differentiation
• Issue: noise

– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of

Gaussian filter
• because differentiation is convolution, and

convolution is associative

There are three major issues:
 1) The gradient magnitude at different scales is different; which should
 we choose?
 2) The gradient magnitude is large along thick trail; how
 do we identify the significant points?
 3) How do we link the relevant points up into curves?

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

Computing Edges via the gradient

We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?

Non-maximum
suppression

At q, we have a
maximum if the
value is larger
than those at
both p and at r.
Interpolate to
get these
values.

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
r or s).

Remaining issues

• Check that maximum value of gradient
value is sufficiently large
– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Edge Detection Algorithm
• Define Edge filter:

• Next Compute Gradient
–

†

Guv = exp(- 1
2

(xu - N /2)2

pixelwidth2 +
(yv - M /2)2

pixelwidth2

È

Î
Í

˘

˚
˙)

Dij = [-1 0 1]
Dx = G ƒ D
Dy = G ƒ DT

G =

Dx =

†

Ix = Dx ƒ I
Iy = Dy ƒ I

—I(i, j) =
Ix (i, j)
Iy (i, j)

È

Î
Í

˘

˚
˙

†

—I(i, j) = Ix(i, j)2 + Iy(i, j)2

–—I(i, j) = tan-1 Iy(i, j)
Ix(i, j)

Ê

Ë
Á

ˆ

¯
˜

Gradient Magnitude

Gradient Direction

Edge Detection Algorithm
• Find an initial point (i,j) such that:

 Where c is relatively large

• Find nearby points in the direction of (i,j)’s
gradient

†

—I(i, j) > c

†

r n (i, j) =
Ix (i, j) / —I(i, j)
Iy (i, j) / —I(i, j)

È

Î
Í

˘

˚
˙

Find nearby points
u
v

È

Î
Í

˘

˚
˙ such that n(u,v)T r n (i, j) < e

Choose
u
v

È

Î
Í

˘

˚
˙ with maximal gradient magnitude

Edge Detection Algorithm

• While set of (i,j) with not visited
– Find a start point, erasing points that have been

checked.
• While possible, expand a chain through the current point by:

– 1) predicting a next set of points (not visited) using the direction
perp. to gradient

– 2) Finding which of set (if any) is a local maximum
– 3) Test if grad mag for local max > k
– 4) Recording all the set as visited

• record point and set to current point.
– end

• end

†

—I(i, j) > c

Notice

• Something nasty is happening at corners
• Scale affects contrast
• Edges aren’t bounding contours

fine scale
high
threshold

coarse
scale,
high
threshold

coarse
scale
low
threshold

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

The Laplacian of Gaussian
• Another way to detect

an extremal first
derivative is to look
for a zero second
derivative

• In 2D:

• Bad idea to apply a Laplacian without
smoothing
– smooth with Gaussian, apply Laplacian
– this is the same as filtering with a

Laplacian of Gaussian filter
• Now mark the zero points where there

is a sufficiently large derivative, and
enough contrast

†

—2I(x, y) =
∂ 2I(x, y)

∂x 2 +
∂ 2I(x, y)

∂y 2

sigma=2

sigma=4

contrast=1 contrast=4LOG zero crossings

We still have unfortunate behaviour
at corners

Orientation representations

• The gradient
magnitude is affected
by illumination
changes
– but it’s direction isn’t

• We can describe
image patches by the
swing of the gradient
orientation

• Important types:
– constant window

• small gradient mags
– edge window

• few large gradient mags in
one direction

– flow window
• many large gradient mags in

one direction
– corner window

• large gradient mags that
swing

Representing Windows

• Types
– constant

• small eigenvalues
– Edge

• one medium, one small
– Flow

• one large, one small
– corner

• two large eigenvalues

†

H = —I() —I()T
window

Â

Filters are templates

• Applying a filter at
some point can be
seen as taking a dot-
product between the
image and some vector

• Filtering the image is a
set of dot products

• Insight
– filters look like the

effects they are
intended to find

– filters find effects they
look like

Normalized correlation

• Think of filters of a
dot product
– now measure the angle
– i.e normalised

correlation output is
filter output, divided
by root sum of squares
of values over which
filter lies

• Tricks:
– ensure that filter has a zero

response to a constant region
(helps reduce response to
irrelevant background)

– subtract image average when
computing the normalizing
constant (i.e. subtract the
image mean in the
neighbourhood)

– absolute value deals with
contrast reversal

