
Color receptors
• Principle of univariance:

cones give the same kind
of response, in different
amounts, to different
wavelengths.  The output
of the cone is obtained by
summing over
wavelengths. Responses
are measured in a variety
of ways (comparing
behaviour of color normal
and color deficient
subjects).

• All experimental evidence
suggests that the response
of the k’th type of cone
can be written as

      where              is the
sensitivity of the receptor
and spectral energy
density of the incoming
light.
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Color receptors
• Plot shows relative sensitivity

as a function of wavelength, for
the three cones.  The S (for
short) cone responds most
strongly at short wavelengths;
the M (for medium) at medium
wavelengths and the L (for
long) at long wavelengths.

• These are occasionally called B,
G and R cones respectively, but
that’s misleading - you don’t
see red because your R cone is
activated.
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Simpler if we discretize
frequency
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What does color matching do?
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Color matching functions
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A qualitative rendering of
the CIE (x,y) space. The
blobby region represents
visible colors.  There are
sets of (x, y) coordinates
that don’t represent real
colors, because the
primaries are not real lights
(so that the color matching
functions could be positive
everywhere).



A plot of the CIE (x,y)
space.  We show the
spectral locus (the colors
of monochromatic
lights) and the black-
body locus (the colors of
heated black-bodies).  I
have also plotted the
range of typical
incandescent lighting.



Non-linear colour spaces

• HSV: Hue, Saturation, Value are non-linear
functions of XYZ.
– because hue relations are naturally expressed in

a circle

• Uniform: equal (small!) steps give the same
perceived color changes.

• Munsell: describes surfaces, rather than lights -
less relevant for graphics.  Surfaces must be
viewed under fixed comparison light



HSV hexcone



Uniform color spaces

• McAdam ellipses (next slide) demonstrate
that differences in x,y are a poor guide to
differences in color

• Construct color spaces so that differences in
coordinates are a good guide to differences
in color.



Variations in color matches on a CIE x, y space. At the center of the ellipse is the color of a
test light; the size of the ellipse represents the scatter of lights that the human observers tested
would match to the test color; the boundary shows where the just noticeable difference is.
The ellipses on the left have been magnified 10x for clarity; on the right they are plotted to
scale. The ellipses are known as MacAdam ellipses after their inventor. The ellipses at the
top are larger than those at the bottom of the figure, and that they rotate as they move up.
This means that the magnitude of the difference in x, y coordinates is a poor guide to the
difference in color.



CIE u’v’ which is a
projective transform
of x, y. We transform
x,y so that ellipses are
most like one another.
Figure shows the
transformed ellipses.



Color constancy
• Assume we’ve identified and removed specularities
• The spectral radiance at the camera depends on two things

– surface albedo
– illuminant spectral radiance
– the effect is much more pronounced than most people think (see

following slides)
• We would like an illuminant invariant description of the

surface
– e.g. some measurements of surface albedo
– need a model of the interactions



Notice how the
color of light at
the camera varies
with the illuminant
color; here we have
a uniform reflectance
illuminated by five 
different lights, and
the result plotted on
CIE x,y



Notice how the
color of light at
the camera varies
with the illuminant
color; here we have
the blue flower
illuminated by five 
different lights, and
the result plotted on
CIE x,y.  Notice how it
looks significantly more
saturated under some
lights.



Notice how the
color of light at
the camera varies
with the illuminant
color; here we have
a green leaf
illuminated by five 
different lights, and
the result plotted on
CIE x,y



Viewing coloured objects

• Assume
diffuse+specular
model

• Specular
– specularities on

dielectric objects take
the colour of the light

– specularities on metals
can be coloured

• Diffuse
– colour of reflected light

depends on both illuminant
and surface

– people are surprisingly
good at disentangling these
effects in practice (colour
constancy)

– this is probably where some
of the spatial phenomena in
colour perception come
from



When one views a colored
surface, the spectral
radiance of the light
reaching the eye depends
on both the spectral
radiance of the illuminant,
and on the spectral albedo
of the surface.  We’re
assuming that camera
receptors are linear, like
the receptors in the eye.
This is usually the case.
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Lightness Constancy
• Lightness constancy

– how light is the surface, independent of the brightness of the
illuminant

– issues
• spatial variation in illumination
• absolute standard

– Human lightness constancy is very good
• Assume

– frontal 1D “Surface”
– slowly varying illumination
– quickly varying surface reflectance







Lightness Constancy in 2D
• Differentiation,

thresholding are easy
– integration isn’t
– problem - gradient field

may no longer be a gradient
field

• One solution
– Choose the function whose

gradient is “most like”
thresholded gradient

• This yields a
minimization problem

• How do we choose the
constant of
integration?
– average lightness is

grey
– lightest object is white
– ?



Simplest colour constancy

• Adjust three receptor channels
independently
– Von Kries
– Where does the constant come from?

• White patch
• Averages
• Some other known reference (faces, nose)



Colour Constancy - I

• We need a model of
interaction between
illumination and
surface colour
– finite dimensional

linear model seems OK

• Finite Dimensional Linear
Model (or FDLM)
– surface spectral albedo is a

weighted sum of basis
functions

– illuminant spectral exitance
is a weighted sum of basis
functions

– This gives a quite simple
form to interaction between
the two



Finite Dimensional Linear
Models
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General strategies
• Determine what image

would look like under
white light

• Assume
– that we are dealing with flat

frontal surfaces
– We’ve identified and

removed specularities
– no variation in illumination

• We need some form of
reference
– brightest patch is white
– spatial average is

known
– gamut is known
– specularities



Obtaining the illuminant from
specularities

• Assume that a
specularity has been
identified, and
material is dielectric.

• Then in the
specularity, we have

• Assuming 
– we know the sensitivities

and the illuminant basis
functions

– there are no more
illuminant basis functions
than receptors

• This linear system yields
the illuminant coefficients.
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Obtaining the illuminant from
average color assumptions

• Assume the spatial
average reflectance is
known

• We can measure the
spatial average of the
receptor response to get

• Assuming
– g_ijk are known
– average reflectance is

known
– there are not more receptor

types than illuminant basis
functions

• We can recover the
illuminant coefficients
from this linear system
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Computing surface properties
• Two strategies

– compute reflectance
coefficients

– compute appearance under
white light.

• These are essentially
equivalent.

• Once illuminant
coefficients are known, to
get reflectance coefficients
we solve the linear system

• to get appearance
under white light, plug
in reflectance
coefficients and
compute

† 

pk = eirjgijk
i=1, j=1

m,n

Â

† 

pk = e
i

whiterjgijk
i=1, j=1

m,n

Â



Bayesian Color Constancy

† 

sk = eirjgijk
i=1, j=1
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Â

yk = f (x), x = eirj

Simplest example:








