Example application: CMU face detector
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Oval mask for ignoring
background pixels:

Original window:

Best fit linear function:

Lighting corrected window:
(linear function subtracted)
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Figure 2: The steps in preprocessing a window. First, a linear function is fit to
the intensity values in the window, and then subtracted out, correcting for some
extreme lighting conditions. Then, histogram equalization 1s applied, to correct for
different camera gains and to improve contrast. For each of these steps, the mapping
is computed based on pixels inside the oval mask, while the mapping i1s applied to
the entire window.



Mr. Dupont 1s a professional wine taster. When given a French wine,
he will 1dentify 1t with probability 0.9 correctly as French, and will
mistake 1t for a Californian wine with probability 0.1.

When given a Californian wine, he will identify 1t with probability
0.8 correctly as Californian, and will mistake 1t for a French wine
with probability 0.2.

Suppose that Mr. Dupont 1s given ten unlabelled glasses of wine,
three with French and seven with Californian wines. He randomly
picks a glass, tries the wine, and solemnly says: "French". What 1s
the probability that the wine he tasted was Californian?
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Rt _Rc P(C|Rf) = P(RfIC) p( C )/P(Rf)
F|10.9]0.1 B D
= 0.2%0.7/2, P(Rf [w)p(w)

C
0.2]0.8 = 0.2%0.7/(0.9%0.3+0.2*0.7) = 0.34
P(F) = 0.3; P(C) = 0.7 = 0.2%0.7/0.41 = 0.34




Bayes theorem

P(x, y) = P(x]y) P(y)
SO
P(x|y) P(y) = P(y|x) P(x)
and
P(x]y) = P(y|x) P(x) / P(y)
The parameters }-m|T x T T Ctmstant W.I.L.
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“You must choose,
but Choose Wisely”

e (Given only probabilities, can we minimize the number of
errors we make?
* Given:
responses Ri, categories Ci, current category C, data X
* To Minimize error:
— Decide R. if P(C.1x) >P(C, |x) for all ik
P(x1C) P )>PxIC,)PC,)
P(xI1C)/PxIC,.)> P(C,) /P, )
P(xIC)/PIC.)>T
Optimal classifications always involve hard boundaries




Horse Segmentation




P(horse) = 0.04
P(background) = 0.96
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Now evaluate
H p(r; Lhorse)/ p(r; | background)
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Pixels 1n color space
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Histogram Matching

Find current histogram and cumalative
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Use current cumulative as an inverse transform,
Use desired cumulative as forward transform.



Histogram Matching Code

function matchedvalues = histogrammatch(oldvalues, desiredCount, desiredbinvals)

% matchedvalues = histogrammatch(oldvalues, desiredCount, desiredbinvals)

% nonlinearly transform your numbers to enforce a desired histogram ( a table of values and counts)
% writen by: P. Schrater 2003

[oldcount,oldbinvals]=hist(oldvalues(:),sqrt(length(oldvalues(:))));

J0eliminate zero counts and find cumulative table

zind = find(oldcount==0);

oldcount(zind)=[]; oldbinvals(zind)=[];

cumprobold = cumsum(oldcount)/sum(oldcount);

% assign each oldvalue its cumulative prob
pvaluesold = interp1(oldbinvals,cumprobold,oldvalues(:));

% now do same for desired:

%eliminate zero counts and find cumulative table

zind = find(desiredCount==0);

desiredCount(zind)=[]; desiredbinvals(zind)=[];
cumprobnew = cumsum(desiredCount)/sum(desiredCount);

% translate our pvalues back to values by running through the new probability table
matchedvalues = interp1(cumprobnew,desiredbinvals,pvaluesold);

matchedvalues = reshape(matchedvalues,size(oldvalues));
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Dependent distribution
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Pxy = P(ylx).*repmat(px,8,1);

- N W A O O N o

0.25 T

0.2}

0.15

0.1}

Independent distribution

px)p(y)
Pxyind = Px*Py’ = [8x8]

- N W A 00 O N o




3000

2500

2000

1500

1000

500

0.8

0.6

0.2

4000

3500

3000

2500

2000

1500

1000

500

0.5

1.5



After histogram Equalization
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Moral of the story

* You can’t learn much from one picture:

— One 1mage does not capture variation due to:
e camera-based color correction
e Changes 1n lighting between 1images

e Changes 1in viewpoint and distance between images

— These sources are extremely important to model

* Preprocess your images
e Use large training set.



Intrinsic difficulty segmentation
Problem

TFigure 1 Left to right, three detection tasks of increasing degroes of difliculty, The stop sign (left) is easy
to find. The gila monster (centre) is harder. The dalmation dog (right) is almost impossible,



