Problems

- Primarily of two types: Integration and Optimization
- Bayesian inference and learning
 - Computing normalization in Bayesian methods
 \[p(y|x) = \frac{p(y)p(x|y)}{\int_{y'} p(y')p(x|y')dy'} \]
 - Marginalization: \(p(y|x) = \int_z p(y,z|x)dz \)
 - Expectation:
 \[E_{y|x}[f(y)] = \int_y f(y)p(y|x)dy \]
- Statistical mechanics: Computing the partition function
 \[Z = \sum_s \exp \left[-\frac{E(s)}{kT} \right] \]
- Optimization, Model Selection, etc.
Monte Carlo Principle

- Target density $p(x)$ on a high-dimensional space
- Draw i.i.d. samples $\{x_i\}_{i=1}^n$ from $p(x)$
- Construct empirical point mass function
 \[
 p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}(x)
 \]

- One can approximate integrals/sums by
 \[
 I_n(f) = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \xrightarrow{a.s.} \quad I(f) = \int f(x)p(x)dx
 \]

- Unbiased estimate $I_n(f)$ converges by strong law
- For finite σ_f^2, central limit theorem implies
 \[
 \sqrt{n}(I_n(f) - I(f)) \xrightarrow{n \to \infty} N(0, \sigma_f^2)
 \]
Rejection Sampling

- Target density $p(x)$ is known, but hard to sample
- Use an easy to sample proposal distribution $q(x)$
- $q(x)$ satisfies $p(x) \leq Mq(x), M < \infty$
- Algorithm: For $i = 1, \cdots, n$
 1. Sample $x_i \sim q(x)$ and $u \sim \mathcal{U}(0, 1)$
 2. If $u < \frac{p(x_i)}{Mq(x_i)}$, accept x_i, else reject
- Issues:
 - Tricky to bound $p(x)/q(x)$ with a reasonable constant M
 - If M is too large, acceptance probability is small
Rejection Sampling (Contd.)

Instructor: Arindam Banerjee
Markov Chains

- Use a Markov chain to explore the state space
- Markov chain in a discrete space is a process with
 \[p(x_i|x_{i-1}, \ldots, x_1) = T(x_i|x_{i-1}) \]

- A chain is homogenous if \(T \) is invariant for all \(i \)
- MC will stabilize into an invariant distribution if
 1. Irreducible, transition graph is connected
 2. Aperiodic, does not get trapped in cycles
- Sufficient condition to ensure \(p(x) \) is the invariant distribution
 \[p(x_i) T(x_{i-1}|x_i) = p(x_{i-1}) T(x_i|x_{i-1}) \]

- MCMC samplers, invariant distribution = target distribution
- Design of samplers for fast convergence
Random walker on the web
- Irreducibility, should be able to reach all pages
- Aperiodicity, do not get stuck in a loop

PageRank uses $T = L + E$
- L = link matrix for the web graph
- E = uniform random matrix, to ensure irreducibility, aperiodicity

Invariant distribution $p(x)$ represents rank of webpage x

Continuous spaces, T becomes an integral kernel K

$$
\int_{x_i} p(x_i) K(x_{i+1}|x_i) dx_i = p(x_{i+1})
$$

$p(x)$ is the corresponding eigenfunction
The Metropolis-Hastings Algorithm

- Most popular MCMC method
- Based on a proposal distribution $q(x^*|x)$

Algorithm: For $i = 0, \ldots, (n-1)$
- Sample $u \sim \mathcal{U}(0,1)$
- Sample $x^* \sim q(x^*|x_i)$
- Then

$$x_{i+1} = \begin{cases}
 x^* & \text{if } u < A(x_i, x^*) = \min \left\{ 1, \frac{p(x^*)q(x_i|x^*)}{p(x_i)q(x^*|x_i)} \right\} \\
 x_i & \text{otherwise}
\end{cases}$$

- The transition kernel is

$$K_{MH}(x_{i+1}|x_i) = q(x_{i+1}|x_i)A(x_i, x_{i+1}) + \delta_{x_i}(x_{i+1})r(x_i)$$

where $r(x_i)$ is the term associated with rejection

$$r(x_i) = \int x q(x|x_i)(1 - A(x_i, x)) dx$$
The Metropolis-Hastings Algorithm (Contd.)

Approximate Inference: MCMC
The Metropolis-Hastings Algorithm (Contd.)

- By construction

\[p(x_i)K_{MH}(x_{i+1}|x_i) = p(x_{i+1})K_{MH}(x_i|x_{i+1}) \]

- Implies \(p(x) \) is the invariant distribution

Basic properties
- Irreducibility, ensure support of \(q \) contains support of \(p \)
- Aperiodicity, ensured since rejection is always a possibility

Independent sampler: \(q(x^*|x_i) = q(x^*) \) so that

\[A(x_i, x^*) = \min \left\{ 1, \frac{p(x^*)q(x_i)}{q(x^*)p(x_i)} \right\} \]

- Metropolis sampler: symmetric \(q(x^*|x_i) = q(x_i|x^*) \)

\[A(x_i, x^*) = \min \left\{ 1, \frac{p(x^*)}{p(x_i)} \right\} \]
The Metropolis-Hastings Algorithm (Contd.)

\[\sigma' = 1 \quad \sigma' = 10 \quad \sigma' = 100 \]

MCMC approximation

Target distribution

Markov chain
Mixtures of MCMC Kernels

- Powerful property of MCMC: Combination of Samplers
- Let K_1, K_2 be kernels with invariant distribution p
 - Mixture kernel $\alpha K_1 + (1 - \alpha)K_2, \alpha \in [0, 1]$ converges to p
 - Cycle kernel K_1K_2 converges to p
- Mixtures can use global and local proposals
 - Global proposals explore the entire space (with probability α)
 - Local proposals discover finer details (with probability $(1 - \alpha)$)
- Example: Target has many narrow peaks
 - Global proposal gets the peaks
 - Local proposals get the neighborhood of peaks (random walk)
Cycles of MCMC Kernels

- Split a multi-variate state into blocks
- Each block can be updated separately
- Convergence is faster if correlated variables are blocked
- Transition kernel is given by

\[
K_{MHCycle}(x^{(i+1)}|x^{(i)}) = \prod_{j=1}^{n_b} K_{MH(j)}(x^{(i+1)}_{b_j}|x^{(i)}_{b_j}, x^{(i+1)}_{-[b_j]})
\]

- Trade-off on block size
 - If block size is small, chain takes long time to explore the space
 - If block size is large, acceptance probability is low
- Gibbs sampling effectively uses block size of 1
The Gibbs Sampler

- For a d-dimensional vector x, assume we know

 $$p(x_j|x_{-j}) = p(x_j|x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d)$$

- Gibbs sampler uses the following proposal distribution

 $$q(x^*|x(i)) = \begin{cases} p(x^*_j|x_{-j}^{(i)}) & \text{if } x^*_j = x_{-j}^{(i)} \\ 0 & \text{otherwise} \end{cases}$$

- The acceptance probability

 $$A(x^{(i)}, x^*) = \min \left\{ 1, \frac{p(x^*)q(x^{(i)}|x^*)}{p(x^{(i)})q(x^*|x^{(i)})} \right\} = 1$$

- Deterministic scan: All samples are accepted
The Gibbs Sampler (Contd.)

- Initialize $x^{(0)}$. For $i = 0, \ldots, (N - 1)$
 - Sample $x_1^{(i+1)} \sim p(x_1 | x_2^{(i)}, x_3^{(i)}, \ldots, x_d^{(i)})$
 - Sample $x_2^{(i+1)} \sim p(x_1 | x_1^{(i+1)}, x_3^{(i)}, \ldots, x_d^{(i)})$
 - \ldots
 - Sample $x_d^{(i+1)} \sim p(x_d | x_1^{(i+1)}, \ldots, x_{d-1}^{(i+1)})$

- Possible to have MH steps inside a Gibbs sampler
- For $d = 2$, Gibbs sampler is the data augmentation algorithm
- For Bayes nets, the conditioning is on the Markov blanket

$$p(x_j | x_{-j}) \propto p(x_j | x_{pa(j)}) \prod_{k \in ch(j)} p(x_k | pa(k))$$
Gibb’s Example

1. Initialize:
 (a) Instantiate $\text{Rain} = \text{true}, \text{Cloudy} = \text{true}$
 (b) Let $x^{(0)} = (\text{Rain} = \text{true}, \text{Cloudy} = \text{true})$

2. For $t = 1, 2, \ldots$
 (a) Pick variable to update from $\{\text{Rain, Cloudy}\}$ uniformly at random.
 (b) If Rain was picked
 i. Sample Rain from $P(\text{Rain}|\text{Cloudy} = \text{[value]}_{t-1}, \text{Sprinkler} = \text{true}, \text{WetGrass} = \text{true})$
 ii. Let $x^{(t)} = (\text{Rain} = \text{[value]}_{t}, \text{Cloudy} = \text{[value]}_{t-1})$
 (c) Else
 i. Sample Cloudy from $P(\text{Cloudy}|\text{Rain} = \text{[value]}_{t-1}, \text{Sprinkler} = \text{true}, \text{WetGrass} = \text{true})$
 ii. Let $x^{(t)} = (\text{Cloudy} = \text{[value]}_{t}, \text{Rain} = \text{[value]}_{t-1})$
Simulated Annealing

- Problem: To find global maximum of $p(x)$
- Initial idea: Run MCMC, estimate $\hat{p}(x)$, compute max
- Issue: MC may not come close to the mode(s)
- Simulate a non-homogenous Markov chain
- Invariant distribution at iteration i is $p_i(x) \propto p^{1/T_i}(x)$
- Sample update follows

$$x_{i+1} = \begin{cases} x^* & \text{if } u < A(x_i, x^*) = \min \left\{ 1, \frac{p^{1/T_i}(x^*) q(x_i|x^*)}{p^{1/T_i}(x_i) q(x^*|x_i)} \right\} \\ x_i & \text{otherwise} \end{cases}$$

- T_i decreases following a cooling schedule, $\lim_{i \to \infty} T_i = 0$
- Cooling schedule needs proper choice, e.g., $T_i = \frac{1}{C \log(i+T_0)}$
Auxiliary Variable Samplers

- Sometimes easier to sample from $p(x, u)$ rather than $p(x)$
- Sample (x_i, u_i), and then ignore u_i
- Consider two well-known examples:
 - Hybrid Monte Carlo
 - Slice sampling
The Slice Sampler

- Construct extended target distribution

\[p^*(x, u) = \begin{cases} 1 & \text{if } 0 \leq u \leq p(x) \\ 0 & \text{otherwise} \end{cases} \]

- It follows that: \(\int p^*(x, u) \, du = \int_0^{p(x)} du = p(x) \)

- From the Gibbs sampling perspective

\[p(u|x) = \mathcal{U}[0, p(x)] \quad p(x|u) = \mathcal{U}_A, A = \{x : p(x) \geq u\} \]

- Algorithm is easy is \(A \) is easy to figure out
- Otherwise, several auxiliary variables need to be introduced
The Slice Sampler (Contd.)

Instructor: Arindam Banerjee

Approximate Inference: MCMC
Hybrid Monte Carlo

- Uses gradient of the target distribution
- Improves “mixing” in high dimensions
- Effectively, take steps based on gradient of $p(x)$
- Introduce auxiliary momentum variables $u \in \mathbb{R}^d$ with

$$p(x, u) = p(x)N(u; 0, I_d)$$

- Gradient vector $\Delta(x) = \partial \log p(x)/\partial x$, step-size ρ
- Gradient descent for L steps to get proposal candidate
- When $L = 1$, one obtains the Langevin algorithm

$$x^* = x_0 + \rho u_0 = x^{(i-1)} + \rho (u^* + \rho \Delta(x^{(i-1)})/2)$$
Hybrid Monte Carlo (Contd.)

- Initialize $x^{(0)}$. For $i = 0, \ldots, (n - 1)$
 - Sample $v \sim U[0, 1]$, $u^* \sim N(0, \mathbb{I}_d)$
 - Let $x_0 = x^{(i)}$, $u_0 = u^* + \rho \Delta(x_0)/2$
 - For $\ell = 1, \ldots, L$, with $\rho_\ell = \rho, \ell < L$, $\rho_L = \rho/2$

$$x_\ell = x_{\ell - 1} + \rho u_{\ell - 1} \quad u_\ell = u_{\ell - 1} + \rho_\ell \Delta(x_\ell)$$

- Set

$$(x^{(i+1)}, u^{(i+1)}) = \begin{cases} (x_L, u_L) & \text{if } v < \min \left\{ 1, \frac{p(x_L)}{p(x_i)} \exp \left(-\frac{1}{2} \left(\| u_L \|^2 - \| u^* \|^2 \right) \right) \right\} \\ (x^{(i)}, u^*) & \text{otherwise} \end{cases}$$

- Tradeoffs for ρ, L
 - Large ρ gives low acceptance, small ρ needs many steps
 - Large L gives candidates far from x_0, but expensive

Instructor: Arindam Banerjee

Approximate Inference: MCMC