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General Information 
• Course Number: CSci 5512  
• Class: M W 4:00-05:15 pm  
• Web page: http://www-users.itlabs.umn.edu/

classes/Spring- 2010/csci5512 
– Or go to www.schrater.org 
– Click on schrater’s homepage 
– Follow the AII 2 courselink  



Course Content: 

    * Uncertainty (Chapter 13) 
    * Probabilistic Reasoning, Bayesian Networks (Chapter 14) 
    * Probabilistic Reasoning over Time (Chapter 15) 
    * Making Simple Decisions (Chapter 16) 
    * Making Complex Decisions, Markov Decision Processes (Chapter 17) 
    * Learning from Observations (Chapter 18) 
    * Statistical Learning Methods (Chapter 20) 
    * Reinforcement Learning (Chapter 21) 
    * If time, Language, Vision and Robotics (Chaps 22, 23, 24) 



Coursework 
• Homeworks 

– There will be 4 
– First one is posted and due in a week 
– Submit using the submit tool! 
– Writeup format:  PDF 
– Programming:  your choice- matlab, java, or C 
– Individual submission – and include names of 

people you discuss problems with 
• One midterm 
• One final project 



Homework Schedule 

 Homework   Post Date   Due Date   Due Time   Total Time 
HW1  Wed, Jan 19  Wed, Jan 26   4 pm  7 days 
HW2  Mon, Feb 21  Mon, Mar 8    4 pm  14 days 
HW3  Mon, Mar 28  Mon, Apr 11   4 pm  14 days 
HW4  Mon, Apr 18  Mon, May 2   4 pm  14 days 



Grading 

• Homework:   50 % = 4 × 12.5 %  
• Mid-Term:   20 %  
•  Final Project:  30% 



Final Project 
•  Final Project Assignment:  Your final project will involve one of the 

following  
•  1) Simulation or experiments. 

•  2) Literature survey (with critical evaluation) on a given topic. 

•  3) Theoretical work (detailed derivations, extensions of existing work, 
etc) 

•  The project schedule is: 
•  Feb. 24: Topic selection. One or two pages explaining the project with a 

list of references. 
•  May 9: Final report (10 to 15 pages).  



Final Project 
•  In all cases, the work should be written up as a 

10-15 page paper. More difficult projects will get 
better grades if sucessfully completed. You will be 
evaluated in terms of the care with which you set 
up and thought through the goals and 
implementation, and in terms of the competence of 
the execution. Regardless of form the write up 
must include a survey of related literature results.   
This survey counts for 30% of your project grade 
and should show your ability to independently find, 
read, understand, and summarize papers in the 
primary literature related to your project topic.  



Autonomous Agents 
•  Artificial, Deterministic world 

– Agents can be programmed to reason and interact in a 
known environment  

•  Real, stochastic, partially observed world 
– Environmental dynamics and consequences of actions 

are not fully determined or known (uncertainty) 
– Environment must be partially acquired by experience 

(learning) 
– Agents goals must be encoded at a level that permits 

learning and uncertainty handling (reinforcement 
leanrning   
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Transition Dynamics 

- X: set of states  [xs,xr] 

•  state component 

•  reward component 

-A: set of actions 

- T=P(x’|x,a): transition and reward 
probabilities 

- O: Observation function 

- b: Belief and info. state  

- π: Policy



Topics 

 Uncertainty (Probability) 
 Probabilistic Reasoning (Bayesian Networks) 
 Probabilistic Reasoning over Time (HMMs, DBNs) 
 Making Simple/Complex Decisions (Utility, MDPs) 
 Game Theory 
 Learning from Observations 
 Reinforcement Learning 
 Latent Variable Models 
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Uncertainty 

  Uncertainty inherent in decision problems 
   Partial knowledge of environment 
   Environment may be complex or stochastic 
   Existence of other agents 
  First-order logic is inappropriate for such domains 
  Several different events are possible 
  Each event 
   Has a different “probability” of happening 
   Has different “utility” or “payoffs” 

 Rational decisions maximize expected utility 
 Decision Theory ≡ Utility Theory + Probability Theory 
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Examples 

 Game of Monopoly 

 Pursuit with Constraints 
  Chasing in Manhattan 
  Robotic teams for search/rescue 
 The Stock Market 



Probability 

 Sample space Ω of events 
 Each “event” ω ∈ Ω has a associated “measure” 
  Probability of the event P(ω) 
 Axioms of Probability: 
  ∀ω,P(ω) ∈ [0,1] 
  P(Ω) = 1 
  P(ω1 ∪ ω2) = P(ω1) + P(ω2) − P(ω1 ∩ ω2) 



Random Variables 

 Random variables are mappings of events (to real numbers) 
  Mapping X  : Ω → R 
  Any event ω maps to X(ω) 
 Example: 
  Tossing a coin has two possible outcomes 
  Denoted by {H,T} or {0,1} 
  Fair coin has uniform probabilities 

P(X  = 0) = 
1 
2 P(X  = 1) = 

1 
2 

Random variables (r.v.s) can be 
 Discrete, e.g., Bernoulli 
 Continuous, e.g., Gaussian 



Distribution, Density 

 For a continuous r.v. 
  Distribution function F(x) = P(X  ≤ x) 
  Corresponding density function f (x)dx = dF(x) 

Note that 
F(x) = 

x 

f (t)dt 
  t=−∞ 

For a discrete r.v. 
 Probability mass function f (x) = P(X  = x) = P(x) 
 We will call this the probability of a discrete event 
 Distribution function F(x) = P(X  ≤ x) 



f (x1) = 

Joint Distributions, Marginals 

 For two continuous r.v.s X1,X2 

  Joint distribution F(x1,x2) = P(X1 ≤ x1,X2 ≤ x2) 
  Joint density function f (x1,x2) can be defined as before 
  The marginal probability density 
   ∞ 

f (x1,x2)dx2 
  x2=−∞ 

For two discrete r.v.s X1,X2 

 Joint probability f (x1,x2) = P(X1 = x1,X2 = x2) = P(x1,x2) 
 The marginal probability 

P(X1 = x1) = P(X1 = x1,X2 = x2) 
 x2 

Can be extended to joint distribution over several r.v.s 
Many hard problems involve computing marginals 
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Independence 

 Joint probability P(X1 = x1,X2 = x2) 
  X1,X2 are different dice 
  X1 denotes if grass is wet, X2 denotes if sprinkler was on 

 Two r.v.s are independent if 

   P(X1 = x1,X2 = x2) = P(X1 = x1)P(X2 = x2) 

  Two different dice are independent 
  If sprinkler was on, then grass will be wet ⇒ dependent 
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Since P(x,y) = P(y|x)P(x), we have 
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Instructor:  Arindam Banerjee 
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Inference problems: 
 Given ‘grass wet’ what is P(‘sprinkler on’) 
 Given ‘symptom’ what is P(‘disease’) 
For any r.v.s X,Y, the conditional probability 

P(x|y) = P(x,y) 
 P(y) 

Since P(x,y) = P(y|x)P(x), we have 

P(y|x) = P(x|y)P(y) 
 P(x) 

Expressing ‘posterior’ in terms of ‘conditional’:  Bayes Rule 


