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Outline

♦ Exact inference by enumeration

♦ Exact inference by variable elimination

♦ Approximate inference by stochastic simulation

♦ Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge = empty, Lights = on, Starts= false)

Conjunctive queries: P(Xi,Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
B E

J

A

M

P(B|j, m)
= P(B, j, m)/P (j, m)
= αP(B, j,m)
= α Σe Σa P(B, e, a, j, m)

Rewrite full joint entries using product of CPT entries:
P(B|j, m)
= α Σe Σa P(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B) Σe P (e) Σa P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X ))

function Enumerate-All(vars,e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P (y | Pa(Y )) × Enumerate-All(Rest(vars),e)
else return

∑
y P (y | Pa(Y )) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y
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Evaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j, m)
= αP(B)

︸ ︷︷ ︸
B

Σe P (e)
︸ ︷︷ ︸

E

Σa P(a|B, e)
︸ ︷︷ ︸

A

P (j|a)
︸ ︷︷ ︸

J

P (m|a)
︸ ︷︷ ︸

M
= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)fM(a)
= αP(B)ΣeP (e)ΣaP(a|B, e)fJ(a)fM(a)
= αP(B)ΣeP (e)ΣafA(a, b, e)fJ(a)fM(a)
= αP(B)ΣeP (e)fĀJM(b, e) (sum out A)
= αP(B)fĒĀJM(b) (sum out E)
= αfB(b)× fĒĀJM(b)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Σxf1 × · · · × fk = f1 × · · · × fi Σx fi+1 × · · · × fk = f1 × · · · × fi × fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj, y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj, y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f(a, b, c)
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Variable elimination algorithm

function Elimination-Ask(X,e, bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . , Xn)

factors← [ ]; vars←Reverse(Vars[bn])
for each var in vars do

factors← [Make-Factor(var ,e)|factors]
if var is a hidden variable then factors←Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))
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Irrelevant variables

Consider the query P (JohnCalls|Burglary = true)
B E

J

A

M

P (J |b) = αP (b)
∑

e
P (e)

∑

a
P (a|b, e)P (J |a)

∑

m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E
B E

J

A

M

For P (JohnCalls|Alarm = true), both
Burglary and Earthquake are irrelevant
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Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of variable elimination are O(dkn)

Multiply connected networks:
– can reduce 3SAT to exact inference ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete

A B C D

1 2 3

AND

0.5 0.50.50.5

LL

L

L

1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S

Coin

0.52) Compute an approximate posterior probability P̂
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior
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Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements
for i = 1 to n do

xi ← a random sample from P(Xi | parents(Xi))
given the values of Parents(Xi) in x

return x
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Sampling from an empty network contd.

Probability that PriorSample generates a particular event
SPS(x1 . . . xn) = Πn

i = 1P (xi|parents(Xi)) = P (x1 . . . xn)
i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P (t, f, t, t)

Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn

Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P (x1 . . . xn)

That is, estimates derived from PriorSample are consistent

Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)
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Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P̂(X|e) = αNPS(X, e) (algorithm defn.)
= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ P(X, e)/P (e) (property of PriorSample)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi | parents(Xi))
else xi ← a random sample from P(Xi | parents(Xi))

return x, w
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Likelihood weighting example
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Likelihood weighting analysis

Sampling probability for WeightedSample is
SWS(z, e) = Πl

i = 1P (zi|parents(Zi))
Note: pays attention to evidence in ancestors only

C loudy

RainSprinkler

 W et
G rass

⇒ somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
w(z, e) = Πm

i = 1P (ei|parents(Ei))

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i = 1P (zi|parents(Zi)) Πm

i = 1P (ei|parents(Ei))
= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi |mb(Zi))

given the values of MB(Zi) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:
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Wander about for a while, average what you see
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MCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
C loudy

RainSprinkler

 W et
G rass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′

i|mb(Xi)) = P (x′
i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Summary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:
– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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