CSci 5512: Artificial Intelligence II



Bayesian Networks with Loops
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® A direct application of sum-product can be problematic
¢ Can be converted to a junction tree, size can be exponential

» Focus on approximate inference techniques:

. Stochastic inference, based on sampling
. Deterministic inference, based on approximations



Inference by Stochastic Simulation

* Basic idea:
* Draw N samples from a sampling distribution
+ Compute an approximate posterior probability P~
+ Show this converges to the true probability P

» Sampling approaches:
« Sampling from an empty network
» Rejection sampling
. Likelihood weighting
, Markov chain Monte Carlo (MCMC)



Sampling from an empty network

Consider a Bayesian Network P(X1,...,Xn)
The joint distribution factorizes as
n
P(Xi1,...,Xn) = H P(X;| Parents(X;))
i=1
Fori=1,...n

Assume Parents(Xi) have been instantiated
Draw a sample xi following P(Xi|Parents(Xi))

(x1,...,xn) forms a sample from the Bayesian Network
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Sampling from an Empty Network (Contd.)

@ Probability of generating (x1,...,xn) = P(x1,...,Xn)
e Sampling following true prior probability

e How to estimate P(xi,...,x,) from samples?
o Let N(xy...x,) = # samples of (x1,...,xp)
@ Then
Nli_r:;o P(xi,...,xn) = Nll_r)noc N(xt,...,xa)/N
= P(x1,...,%n)

o Estimates derived from samples are consistent

P(x1,... %) = P(x1,. .., %)



Rejection Sampling

* P (X|e) estimates from samples agreeing with e
* Draw sample x from the Bayesian network
* Ifx is consistent with e, increment N(x)
» Obtain P (X]e) by normalization
+ Example
» Estimate P(Rain|Sprinkler = true) using 100 samples
» 27 samples have Sprinkler = true
. Of these, 8 have Rain = true and 19 have Rain = false

P(Rain = true | Sprinkler = true) = %



Analysis of Rejection Sampling

* Rejection sampling estimates N(X,e) and N(e)

The conditional probability estimate

ﬁ(X|e)=aN(X,e)= NSES) ~ Pgé? =P(Xle)

Obtains consistent posterior estimates
P(e) drops off exponentially with number of evidence variables
What if P(e) is very small

» Need large number of samples to get reliable estimates



Likelihood Weighting

® Main Idea

* Fix evidence variables, sample only non-evidence variables
* Weigh each sample by the likelihood of the evidence

» Setw=1. Fori=1ton
If Xi is a non-evidence variable, sample P(Xi|Parents(Xi))

If Xi is an evidence variable Ei, w «— w x P(Ei|Parents(Ei))

» Then (X,w) forms a weighted sample



P(C)
50

C [P(SIC C [PRIC




P(C)
50

C | P(SIC )" : c [pPrIC

7]

)
Iy
el
(=)

Setw=1. Fori=1ton
If Xi is a non-evidence variable, sample P(Xi|Parents(Xi))
If Xi is an evidence variable Ei, w «— w x P(Ei|Parents(E:))



P(C)

C [P(SIC C [PRIC
10 |1 Sprinkler @ T .80
s \/& /‘ . F| 20

P(WS,R

R

7]

R
mHm A | e

99
.90
90
.01

Sample Cloudy



P(C)

C [P(SIC C [PRIC

50
T| .10 @ T| 80

P(WS,R

7]

o m
M1 | w

99
.90
90
.01

Sample Cloudy
w=1.0



P(C)

C [P(SIC C [PRIC

50
T| .10 @ T| 80

P(WS,R

7]

o m
M1 | w

99
.90
90
.01

Sample Cloudy
w=1.0



P(C)

C | P(SIC C | PRIC

.50
T .10 - . T| .80
F| 5 \—/& F| 20

P(WS,R

7]

)
Iy

99
.90
90
.01

Sprinkler is an evidence node
w=1.0x0.1
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Final Sample weight
w=1.0x0.1x.99=0.099



Likelihood Weighting Analysis

@ Sampling probability for non-evidence component z

/
S(z,e) = H P(zj|Parents(Z;))
i=1
@ Sample weight from evidence component e

w(z,e) = ﬁ P(ej| Parents(E;))
@ Weighted sampling probal;;ilty is
S(z,e)w(z,e) = ﬁ P(z;|Parents(Z;)) ﬁ P(e;|Parents(E;))
= ,/:(12,e) -

@ Likelihood weighting returns consistent estimates

Performance degrades with lots of evidence variables



Approximate Inference using MCMC

Construct a Markov chain based on the Bayesian network
“State” of network = current assignment to all variables

Generate next state by sampling one variable given Markov
blanket

Sample each variable in turn, keeping evidence fixed
» More general sampling schedules are admissible



The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wet Wet
[ras: (Gras|

>

Grass Grass

Wet

Wander about for a while, average what you see



MCMC Example (Contd.)

Problem: Estimate
P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat

Count number of times Rain is true and false in the samples

¢

Example: Visit 100 states
« 31 have Rain = true, 69 have Rain = false
31

P(Rain = true|Sprinkler = true, WetGrass = true) = 100

L

Theorem: Markov chain approaches stationary distribution
» Long-run fraction is proportional to posterior probability



Markov Blanket Sampling

Markov blanket of Cloudy is Sprinkler and Rain
Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as

P(x;|MB(X;)) < P(x;|Parents(X;)) H P(zj|Parents(Z;))
Z;e Children(X;)

Main computational problems

o Difficult to tell if convergence has been achieved
o Can be wasteful if Markov blanket is large



