Approximate Inference
CSci 5512: Artificial Intelligence II

Bayesian Networks with Loops

- A direct application of sum-product can be problematic
- Can be converted to a junction tree, size can be exponential
- Focus on approximate inference techniques:
 - Stochastic inference, based on sampling
 - Deterministic inference, based on approximations

Inference by Stochastic Simulation

- Basic idea:
 - Draw N samples from a sampling distribution
 - Compute an approximate posterior probability P[^]
 - Show this converges to the true probability P
- Sampling approaches:
 - Sampling from an empty network

 - Rejection sampling
 Likelihood weighting
 Markov chain Monte Carlo (MCMC)

Sampling from an empty network

Consider a Bayesian Network P(X1,...,Xn)

The joint distribution factorizes as

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|Parents(X_i))$$

For i = 1,...,n

Assume $Parents(X_i)$ have been instantiated Draw a sample x_i following $P(X_i|Parents(X_i))$

(x1,...,xn) forms a sample from the Bayesian Network

Sampling from an Empty Network (Contd.)

- Probability of generating $(x_1, \ldots, x_n) = P(x_1, \ldots, x_n)$
 - Sampling following true prior probability
 - How to estimate $P(x_1, ..., x_n)$ from samples?
- Let $N(x_1...x_n) = \#$ samples of $(x_1,...,x_n)$
- Then

$$\lim_{N\to\infty} \hat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N(x_1,\ldots,x_n)/N$$
$$= P(x_1,\ldots,x_n)$$

• Estimates derived from samples are consistent

$$\hat{P}(x_1,\ldots,x_n)\approx P(x_1,\ldots,x_n)$$

Rejection Sampling

- $\hat{P}(X|e)$ estimates from samples agreeing with e
 - Draw sample x from the Bayesian network
 - If x is consistent with e, increment N(x)
 - Obtain P (X|e) by normalization
- Example
 - Estimate P(Rain|Sprinkler = true) using 100 samples

 - 27 samples have Sprinkler = true
 Of these, 8 have Rain = true and 19 have Rain = false

$$\hat{P}(Rain = true \mid Sprinkler = true) = \frac{8}{27}$$

Analysis of Rejection Sampling

- Rejection sampling estimates N(X,e) and N(e)
- The conditional probability estimate

$$\hat{P}(X|e) = \alpha N(X,e) = \frac{N(X,e)}{N(e)} \approx \frac{P(X,e)}{P(e)} = P(X|e)$$

- Obtains consistent posterior estimates
- P(e) drops off exponentially with number of evidence variables
- What if P(e) is very small
 - Need large number of samples to get reliable estimates

Likelihood Weighting

- Main Idea
 - Fix evidence variables, sample only non-evidence variables
 - Weigh each sample by the likelihood of the evidence
- Set w = 1. For i = 1 to n

If X_i is a non-evidence variable, sample $P(X_i|Parents(X_i))$

If X_i is an evidence variable E_i , $w \leftarrow w \times P(E_i|Parents(E_i))$

• Then (X,w) forms a weighted sample

Set w = 1. For i = 1 to n

If X_i is a non-evidence variable, sample $P(X_i|Parents(X_i))$ If X_i is an evidence variable E_i , $w \leftarrow w \times P(E_i|Parents(E_i))$

Sample Cloudy

Sample Cloudy w=1.0

Sample Cloudy w=1.0

Sprinkler is an evidence node w=1.0x0.1

Sample Rain given Cloudy

Sample Rain given Cloudy

Final Sample weight w=1.0x0.1x.99=0.099

Likelihood Weighting Analysis

• Sampling probability for non-evidence component z

$$S(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | Parents(Z_i))$$

• Sample weight from evidence component e

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | Parents(E_i))$$

• Weighted sampling probability is

$$S(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i|Parents(Z_i)) \prod_{i=1}^{m} P(e_i|Parents(E_i))$$

= $P(\mathbf{z}, \mathbf{e})$

• Likelihood weighting returns consistent estimates

Performance degrades with lots of evidence variables

Approximate Inference using MCMC

- Construct a Markov chain based on the Bayesian network
- "State" of network = current assignment to all variables
- Generate next state by sampling one variable given Markov blanket
- Sample each variable in turn, keeping evidence fixed
 - More general sampling schedules are admissible

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

MCMC Example (Contd.)

- Problem: EstimateP(Rain|Sprinkler = true, WetGrass = true)
- Sample Cloudy or Rain given its Markov blanket, repeat
- Count number of times Rain is true and false in the samples
- Example: Visit 100 states
 - 31 have Rain = true, 69 have Rain = false

$$P(Rain = true|Sprinkler = true, WetGrass = true) = \frac{31}{100}$$

- Theorem: Markov chain approaches stationary distribution
 - Long-run fraction is proportional to posterior probability

Markov Blanket Sampling

- Markov blanket of Cloudy is Sprinkler and Rain
- Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass
- Probability given the Markov blanket is calculated as

$$P(x_i|MB(X_i)) \propto P(x_i|Parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|Parents(Z_j))$$

- Main computational problems
 - Difficult to tell if convergence has been achieved
 - Can be wasteful if Markov blanket is large