
Extensible Point Location Algorithm

Rashmi Sundareswara and Paul Schrater
Department of Computer Science and Engineering

University of Minnesota, Twin Cities, USA
sundares@cs.umn.edu, schrater@umn.edu

Abstract

We present a general walk-through point location algo-
rithm for use with general polyhedron lattices and polygo-
nal meshes assuming the usage of nothing more than a sim-
ple linked list as a data structure to store the polyhedra. The
generality of the approach stems from using barycentric co-
ordinates to extract local information about the location of
the query point that allows a ‘gradient descent’-like walk
toward the goal.

1 Introduction

Many areas of computer graphics and geometric mod-
elling benefit from the the ability to rapidly vary the level-
of-detail of a mesh [1, 11], combine meshes, or automati-
cally reconstruct meshes from point data [1, 12]. For exam-
ple, real-time transfer and display of 3D models between
networked computers can benefit from progressive incre-
mental reconstruction from the vertices, using methods like
Delaunay Triangulation [1]. If such a method is employed,
then one need not send connectivity information along with
the point positions. Any culling of the shape is also done
in real-time. Such an online computation of the shape,
also known as progressive coding [1], shows the user in-
crements of the original intended shape, so that the user
may interact with the whatever shape that is presented. In
most of these applications, specialized data structures are
sent across along with the new points to be inserted, but the
need arises for combining meshes that have no data struc-
tures which relate them to each other, in which case we have
to locate the points dynamically, with no initial information
given about a point. This need arises especially when one
wants to combine different meshes generated by software
packages.

This paper presents a novel method to locate a point in a
triangulation, or in any subdivision or combination of many
such subdivisions (see figure 1), using barycentric coordi-
nates. The paper assumes a very simple data structure - a

Figure 1. A mesh containing polygons of dif-
ferent sizes

simple linked list - to store the polyhedra. Each polyhe-
dron in the list has pointers to its neighbors that are con-
structed when the polyhedron is split. Having this simple
data structure circumvents the problem of having a search
tree for point search, and consequently, allows for easier
transfer of polygon-data between sites. This algorithm can
be generalized to any subdivision or combination of subdi-
visions. This is desired especially when combining meshes
of different software rendering packages, many of which are
optimized such that they don’t always output triangles if the
region is planar. The disadvantage of having just this simple
data structure is a slower point search. A review of existing
methods is done in the following section.

2 Previous Work

Point location methods can be classified into three main
categories:

1. Divide and Conquer, Plane Sweep and Trapezoidal
Maps [7, 4]: The complexity of these algorithms is
O(log(n)) per point, but some of its limitations in-
clude knowing all the points before hand and the need

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

of a specialized data structure, for point location, in
addition to one needed to store the triangulation. Also,
these algorithms would be good choices if the pro-
grammer intends for them to be used locally without
the intention of combining them with other triangula-
tions.

2. Directed Acyclic Graphs (DAG): The complexity of
the point-location step per point is O(log(n)). This
would be a good algorithm to choose if one does not
know the positions of all points beforehand. How-
ever the O(log(n)) complexity is achieved at the cost
of introducing a specialized data structure, in addition
to one storing the current valid triangulation. Among
DAG algorithms, [4] constructs a DAG, where each
node corresponds to a triangle; when the triangle is
subdivided or flipped, the node gets children corre-
sponding to newly created triangles. The current valid
triangulation is therefore in the leaves and the start-
ing large triangle in the root. Location of the inserted
point in this data structure can be done in (O(log(n))
expected and O(n) worst time. If the order of insertion
of the points is randomized, the tree is nearly balanced
so the possibility of the worst case is low.

3. Walk-through algorithms: The complexity of these
point-location algorithms is O(

√
(n)). In these meth-

ods, there is no need of a special extra data structure
such as this DAG. All that is needed is the existing
data structure that contains the triangles (or any sub-
division). The only requirement that the algorithms
adhere to is the support of O(1) time access between
any two neighboring triangles. This is done by hav-
ing pointers from each triangle to its neighbors. This
is easily constructed when the triangle is formed from
its parent triangle. Each time, a new point needs to
be located, the algorithm walks through the triangles
(starting from a random triangle) until it finds the tri-
angle containing the point. The decision for crossing
over to a neighboring triangle is determined by:

(a) Segment intersection test [13, 5]: Here the line
segment is drawn from the query point to a good
starting point, then the walk starts off from the
starting triangle to query point by only crossing
over the triangles intersected by the segment.

(b) Counter Clockwise Wise Search (CCW) [Guibas
and Stolfi] [8, 9]. This is essentially the same as
the Segment Intersection test, but with less com-
putation, which shows, because the path taken
ends up being circuitous (see figure 2). Here we
compute the determinant of an edge with respect
to to the query point and compare that with the
determinant with respect to the opposite vertex

Figure 2. Path taken by CCW. Point is located
in the last triangle, in the upper right corner.

Figure 3. The gray regions are regions of am-
biguity for the CCW test.

for that edge. If the two determinants are op-
posite is sign with respect to each other, then
we cross over the edge. The disadvantage with
this algorithm is the ambiguity that results when
the query point is in a region of two intersect-
ing half-planes. The reason for the ambiguity
is because there are two candidate edges which
equally good for crossing over (see figure 3). For
both such edges, the query point lies on the op-
posite side of the edge as the query point. This
accounts for the meandering in the overall path.

(c) [14] provides a variant of the walk through algo-
rithm, where query sites are bucketed, similar to
bucketing algorithms by [2]. But this uses a spe-
cial data structure of maintenance of the buckets.

What our algorithm provides is the advantage of the
walk-through algorithms, but with the benefit that it is eas-
ily extensible to heterogenous polygonizations, i.e. this al-

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

gorithm will easily adapt to a mesh containing different n-
sided polygons (see figure1). The complexity of our algo-
rithms is the same (O(

√
(n)) per point)the walking algo-

rithms described above. This is because we are inherently
bound by the connectivity the the triangle mesh allows us.
For proof of this, refer to [5, 6, 13]. However, our algorithm
does provide a slight reduction in the constant of complex-
ity bound in case of triangular meshes.

In this paper, we compare our algorithms’s performance
with the Guibas and Stolfi’s [9] and Mucke’s [13] algo-
rithms. We ran our tests on triangle meshes from 10k to
100k triangles. At the end of the paper, we include a dis-
cussion on the extensibility of the algorithm.

3 Theory

Walk-through methods solve point localization by mak-
ing a series of decisions to move into adjacent triangles
judged closer to the query point. The key element in walk-
through algorithms is the decision step. Previous decision
step have been quite closely tied to triangulations in a plane.
We propose a very general decision step that allows exten-
sions of walk-through point location to arbitrary polygo-
nizations.

The decision problem involves determining which of the
adjacent polygons is “closest” to the query point, terminat-
ing when the current polygon contains the query point. The
difficulty is in rapidly establishing the distance from poly-
gons to the query point based solely on the local informa-
tion: the current polygons coordinates and the query point
coordinates.

One solution is to treat the points in the current polygon
as an affine basis for the mesh, and compute the location of
the query point with respect to this basis. By computing the
barycentric (affine) coordinates [3, 10, 15] of the vertices of
adjacent polygons it is possible to quickly find the polygon
closer to the query point. The idea relies on the following
results:

Given at least m + 1 distinct points A0, A1, . . . , Am+1

in �m, a query point p can be represented as a weighted
combination of these points,

p =
m∑

i=0

αiAi = Aj +
m∑

i=0,i �=j

αi(Ai − Aj)

where the vector of weights α are the barycentric coordi-
nates of the point p, and

∑m
i=0 αi = 1 (see figure 4). If and

only if all the coordinates 0 < αi < 1 then the point lies
within the polygon [3, 10].

Barycentric coordinates can be computed as a matrix di-
vision problem by setting up the matrix equation:[

A0 A1 . . . Am+n

1 1 . . . 1

]
�α =

[
p
1

]

A B

C

(r) (s)

(t)

p1(r,s,t) = (-0.2448,-0.1189,1.3636)

+
-

+
-

+
-

t

s r
p1

Figure 4. Barycentric division: regions of
intersections of halfplanes in the triangle,
shown with directionality

which have the form:

Q�α = P

and solution:
�α = Q−pP

where Q−p = Q−1 if the number of vertices is m + 1, and
Q−p = (QT Q)−1QT if the number of vertices is greater
than m + 1.

Note that this representation is origin-free (any polygon
vertex can be thought of as the origin, yet the barycentric
coordinates will be the same). In addition, the relative mag-
nitude of the barycentric coordinates gives important infor-
mation about the location of the current polygon’s vertices
with respect to the query point: larger coordinates have ver-
tices closer to the query point.

This leads to a very general idea for walk-through point-
localization in n-dimensional meshes:

• Given the current polyhedron, choose at least n + 1
points in general array from that polyhedron and/or its
neighbors.

• Compute the barycentric coordinates of the query
point.

• Pick the vertices corresponding to the n highest co-
ordinates, and move into the adjacent polyhedron that
shares those vertices.

• Terminate when all the barycentric coordinates are
positive.

For example, for a planar mesh, walk across the edge
defined by the vertices corresponding to the highest two
barycentric coordinates. For 3-D meshes (e.g. tetrahedronal
lattices), walk across the triangle formed from the largest 3
barycentric coordinates.

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

V

Figure 5. Difficulty with intersection test: All
triangles sharing v are considered as being
intersected by the line segment.

4 Implementation

We implemented this general idea for the case of planar
triangulations. Our algorithm, starts 1off at a random tri-
angle and walks toward the triangle(s) containing the query
point, using the following strategy:

1. Compute the Barycentric Coordinates (r, s, t) of query
point P with respect to the current triangle (A,B,C).

2. Cross over the edge defined by the two largest barycen-
tric coordinates.

3. Stop once all the barycentric coordinates are positive

For the triangle case, this is equivalent to crossing over the
edge opposite the smallest barycentric coordinate, iff the co-
ordinate is negative (otherwise terminate).

When we first begin step1, we compute the barycentric
coordinates of the first triangle with respect to the the query
point. We then cross over to the neighboring triangle bor-
dering the edge that represents the lowest of the barycentric
coordinates.

In doing this sort of cross-over, we are inherently walk-
ing in the direction of the steepest descent from the current
triangle to the point: We choose the edge whose opposite
vertex’s representative barycentric coordinate is the lowest,
because it tells us that the query point is on the other side of
this edge. If there are two negative barycentric coordinates,
we choose the one that is smaller. By the sum-to-1 prop-
erty of barycentric coordinates, all coordinates can never be
negative.

5 Results

We compare our work with two techniques, one by
Guibas and Stolfi [8],(CCW Test) and the other by Mucke

1Instead of starting at a random triangle, one can compute a good start-
ing triangle by following step1 of Mucke [13]. Since doesn’t affect the
core of this algorithm, we have proceeded without it

Triangles Seg. Inter.(secs) CCW (secs) BC(secs)

10000 2.765 2.515 2.391
20000 6.46 5.687 5.391
40000 15.484 13.313 12.594
60000 26.328 22.329 20.953
80000 38.719 32.656 30.453
100000 52.25 43.688 40.844

Table 1. Comparison of three Walking algo-
rithms:Segment Intersection Test, Counter-
Clockwise Test and the Barycentric Test.

1 2 3 4 5 6 7 8 9 10

x 10
4

0

10

20

30

40

50

60

Number of Triangles

T
im

e
T

ak
en

(s
ec

s)

Seg Int
CCW
BC

Figure 6. Plots of the time taken for the three
Walking Algorithms.

[13] (Segment Intersection Test). The advantage that our
algorithm provides over the Guibas and Stolfi method is
the unambiguity regarding which edge to traverse when the
query point is located in an ambiguous region with respect
to an edge of the current triangle.

This problem is eliminated when using the Mucke algo-
rithm. But in our implementation of the Mucke algorithm,
we had to add an extra determinant test to make sure that we
weren’t looping around a local triangulation around a ver-
tex v, when the segment from the starting point to the query
point intersected v (see figure 5).

This extra test is not needed when all the triangles in
the mesh are consistently oriented. The advantage of our
method over Mucke, is that our algorithm can implemented
without taking care of how the mesh is oriented. This is es-
pecially important when combining many meshes of differ-
ent orientations (and of different sizes). We implemented
the Mucke algorithm by assuming no specific orientation.
All tests were run on a Pentium 433 dual Hertz processor.
As table 1 and figure 6 show, our algorithm performed
comparably with the other algorithms. In fact, ours per-
formed a constant factor better than both algorithms. As
mentioned earlier in our Theory section, all three algo-
rithms’ complexity is O(

√
(n)). Please note that this con-

stant factor would be different if the mesh were of a differ-

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

Figure 7. The first image shown is of the path
taken by CCW, Second is BC, and the third,
represents both, where lighter regions are the
intersections of both paths.

ent subdivision (discussed in our next Section). Figure 7
illustrates paths taken by CCW, BC the intersection of both.

6 Extension and Future Work

The real merit of the algorithm, however, lies in its exten-
sibility. This algorithm is easily adaptable to meshes which
contain polygons of any size. The other algorithms dis-
cussed will inevitably end up doing computations that are
redundant. For example: The Guibas and Stolfi algorithm
will suffer from heavy ambiguity when faced with many re-
gions of intersecting half planes resulting in a meandering
path (see figure 8).

The Mucke [13] algorithm will compute up to (n-1) seg-
ment intersection tests in addition to orientation tests, which

A B

C

D

E

Figure 8. Regions of ambiguity for a pen-
tagon.

C

D

E

BA Check

Check

Check
Check

Figure 9. Checks that the segment intersec-
tion will perform.

altogether will be redundant since an edge gleans no infor-
mation from a previous edge’s test (see figure 9).

The barycentric test provides an elegant method to de-
cide which edge to traverse: find the edge corresponding to
the two largest barycentric coordinates (see figure 10).

This method would be especially valuable when a re-
ductions in the triangle mesh is desired. Reducing a mesh
would involve polygons of all sizes embedded in the same
mesh. If the goal is to keep the connectivity of the het-
erogenous mesh, but still allow point location in this mesh,
our algorithm would be a good choice for such a goal.

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

A B

C

+ + + - -
- + + - -

- + + + -

+ + + - +

- + + + +

- - + +
-

- - + + +

+ - + + ++ - - + +

- - -+ +

+ + - + +

+ + + + +

+ + - - +

+ - -
- +

D

E

+ + - + +

Figure 10. Regions of the intersection of half-
planes and corresponding directionality with
respect to the vertices A,B,C,D and E.

7 Conclusion

We have presented a simple yet general walk-through
point location algorithm useful for non-homogenous
meshes and higher dimensional polyhedral lattices with the-
oretical complexity O((n)

1
m) [13, 5], where n is the number

of points and m is the dimensionality of the points.

References

[1] P. Alliez, and M. Desbrun, “Progressive Compression for
Lossless Transmission of Triangle Meshes”. Proceedings
from SIGGRAPH 2001, pages 195-202.

[2] J.L. Bentley, B.W. Weide, and A.C Yao, “Optimal Expected
Algorithms for Closest point problems”, ACM Transactions
on Mathematical Software,6(4):563-580, 1980.

[3] H. S. M. Coxeter “Barycentric Coordinates”. Introduction to
Geometry, 2nd ed. New York: Wiley, pp. 216-221, 1969.

[4] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,
Computational Geometry. Algorithms and Applications,
Springer-Verlag Berlin Heidelberg, 1997

[5] L. Devroye, E. Mucke, B. Zhu, “A note on Point Location
of Delaunay Triangulation of Random Points”. Algorithmica,
22(4): 477-482, Dec 1998.

[6] L. Devroye, P. Bose, “Intersections with Random Geometric
Objects”. Manuscript, School Of Computer Science, McGill
University, 1995

[7] R.A Dwyer, “A fast divide and conquer algorithm for con-
structing Delauany Triangulations”. Algorithmica 2:137-151,
1987

[8] L. Guibas, J. Stolfi, “Randomized incremental construction of
Delaunay and Voronoi Diagrams”. Algorithmica 7:381-413,
1992.

[9] L. Guibas, J. Stolfi, “Primitives for manipulation of general
subdivisions and computation of Voronoi diagrams”. ACM
Transaction on Graphics, 4(2):75-123, 1985.

[10] M. Hausner, A Vector Space Approach to Geometry, 1965

[11] H. Hoppe, “Progressive Meshes”, Proceedings ACM SIG-
GRAPH 1996, pp. 99-108, August 1996.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. MacDonald, W.
Stuetzle, “Surface Reconstruction from Unorganized Points”,
Computer Graphics (SIGGRAPH 1992 Proceedings) 26(2):
71-78,July 1992.

[13] E. Mucke, I. Saias and B. Zhu (1996), “Fast Randomized
Point Location Without Preprocessing in Two and Three-
dimensional Delaunay Triangulations”. Proceedings of the
12th Annual Symposium on Computational Geometry, pages
274-283, 1996

[14] P. Su, R.L.S Drysdale, “A Comparision of Sequential Delau-
nay Triangulation Algorithms”. Symposium of Computatinal
Geometry, pages 61-70, 1995

[15] P. Yiu “The Uses of Homogeneous Barycentric Coordinates
in Plane Euclidean Geometry”. International Journal Math.
Ed. Sci. Tech. 31, 569-578, 2000

Proceedings of the 2003 International Conference on Geometric Modeling and Graphics (GMAG’03)

0-7695-1985-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

