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Abstract— The performance of systems for human activity
recognition depends heavily on the placement of cameras ob-
serving the scene. This work addresses the question of the
optimal placement of cameras to maximize the performance
of these types of recognition tasks. Specifically, our goal is to
optimize the quality of the joint observability of the tasks being
performed by the subjects in an area. We develop a general
analytical formulation of the observation problem, in terms of
the statistics of the motion in the scene and the total resolution of
the observed actions, that is applicable to many observation tasks
and multi-camera systems. A nonlinear optimization approach
is used to find the internal and external (mounting position and
orientation) camera parameters that optimize the recognition
criteria. In these experiments, a single camera is repositioned
using a mobile robot. Initial results for the problem of human
activity recognition are presented.

Index Terms— Observability, human activity monitoring,
tracking, patrol robotics.

I. INTRODUCTION

Recognizing human activity is a very important and active
area in computer vision, with applications in human-computer
interaction, user interfaces, robot learning, and surveillance,
among others.

However, the development of systems that can robustly rec-
ognize human behavior in real-world environments remains
challenging. People are free to move throughout an area of
interest in any direction they like (Figure 1). As a result,
positioning a camera to effectively observe the activity of
interest is a difficult problem. A single camera position has
to take into consideration the observability of all activities in
order to optimize the recognition performance.

Our goal is to address the problem of camera placement
to optimize the joint observability of a set of tasks. One
possible application of this research is the development of a
design tool for surveillance camera placement in areas of high
traffic. This application assumes the cameras are statically
mounted to view an area. Optimizing the observability of such
a system means jointly maximizing the observability of the
cameras relative to the expected path distribution for the area
of interest.
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Another application of this research is for active vision.
For unknown or changing path distributions, it is desirable
to be able to move the cameras online, so as to continually
optimize camera pose to match the new path configuration.

In this paper, we present an initial experiment that demon-
strates such an active vision application. Specifically, we
consider the task of human motion recognition. This task
defines our observability goal to be: observing the entire path
of motion while maximizing the view of the subject in the
image.

Observations of this type may be used as input image
sequences for a wide variety of human activity recognitions
systems such as gait recognition and other articulated motion
recognition systems. This field of study applies pattern recog-
nition principles to images of human motion to categorize
the articulated motion that is taking place (walking, running,
etc.) ([2], [3], [51, [7], [9], [11], [22]). Gait recognition
is sometimes considered a category of motion recognition,
focusing on walking as a biometric feature. These classifiers
generally require input image sequences showing the entire
motion path of the subject from a single viewpoint. Moreover,
some views of the motion will better disambiguate the activity
than others, and are thus better suited for recognition.

Our observability formulation and optimization procedure
can find the optimal camera location and pose to observe
these motion sequences and provide this input.

Fig. 1.

Two sample scenes of people walking in real-world settings.

II. RELATED WORK

Proper camera placement for the purpose of optimizing
the sensor’s ability to capture information about a desired
environment or task has been studied considerably. In [17],
O’Rourke provides an in-depth theoretical analysis of the
problem of maximizing camera coverage of an area, where



the camera fields of view do not overlap (the so-called
“art gallery” problem). Fleishman, Cohen-Or and Lischinski
further refined the art gallery framework by introducing a
resolution quality metric [8].

In the field of robotics, vision sensor planning has been
studied to aid in task planning and visual servoing tasks.
In [1], Abrams et al. develop a system to perform dynamic
sensor planning for a camera mounted on a moving robotic
arm in order to compute optimal viewpoints for a pre-planned
robotic grasping task. Nelson and Khosla [13] introduce
a modified manipulability measure in order to reduce the
constraints on the tracking region of eye-in-hand systems
while avoiding singularities and joint limits. They also studied
dynamic sensor placement within this context, and introduced
the concept of the resolvability ellipsoid to direct camera
motion in real-time in order to maintain servoing accuracy
([14] and [15]). Sharma and Hutchinson also introduce a
quantitative sensory measure, perceptibility, in order to im-
prove positioning and control of manipulator systems [18]. In
[19], Tarabanis et al. present a planning method to determine
optimal camera placement given task-specific observational
requirements such as field of view, visibility, and depth
of field. In addition, Yao and Allen [21], formulate the
problem of sensor placement as an unconstrained optimization
problem, and apply tree-annealing to compute optimal camera
viewpoints in the presence of noise. Olague and Mohr [16]
consider the problem of optimal camera placement for 3D
measurement accuracy of parts located at the center of view of
several cameras. They demonstrate good results in simulation
for known static objects. In [4], Chen and Davis develop a
resolution metric for camera placement considering occlusion.
In addition, Denzler et al. [6] develop a Kalman filter based
approach for selecting optimal intrinsic camera parameters for
tracking applications. They demonstrate results for actively
adapting focal length while tracking a rigid object.

Our method differs from these because it considers the
joint observability of a set of tasks. In addition, our method
considers task uncertainty: the locations of the tasks that we
are attempting are not known a priori, and change with time
as the subjects move through the scene.

III. FORMULATION OF PATH OBSERVABILITY METRIC

The goal of camera placement for optimal path observ-
ability is to position a camera to observe the entire path of
motion while maximizing the view of the subject in the image.
The first part of that goal, observing the entire path, requires
the camera to be far enough away from the subject that the
entire motion is captured within the camera field of view. The
second part of the goal, maximizing the view of the subject,
requires the camera to be as close to the subject as possible,
so that the subject is as large as possible in the image. Figure
2(a) depicts the reason for this. For a perspective projection
camera with a fixed field of view, the size of an object in
an image decreases as the distance to the object increases. In
digital imaging, the area of an object in an image corresponds
to a number of pixels that measure the object. As a result,

we can define observability metrics directly in terms of pixel
resolution ((1) and (2)).
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(a) Increasing object-camera dis- (b) Increasing foreshortening.
tance.

Fig. 2. Configurations that decrease observability in pinhole projection

cameras.
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Another factor that reduces observability of an object is
foreshortening. Figure 2(b) depicts this situation. As the angle
between the camera’s view direction and the object decreases,
the projection of the object in camera’s image plane also
decreases. As a result, the number of pixels that measure the
object decreases, and the observability lessens.

Thus, optimizing path observability for an individual path
corresponds to minimizing the distance between the camera
and the path center, along with minimizing foreshortening
effects. In this case, there are two sources of foreshortening:
the angle between the path normal and the camera position,
and the angle between the path center and the normal to the
image plane (Figure 3(b)).

The camera must maintain a minimum distance, dg, (4)
from each path to ensure that the full motion sequence is in
view:

3)

where r, is the aspect ratio of the image, w is the diagonal
width of the imaging sensor, /; is the length of the path, and
f is the focal length of the lens.
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In addition, for multi-path observability, all paths must lie
completely within the view frustum of the camera. These two
constraints are coupled, as they both depend on the field of
view of the camera, yet they are not equivalent. The first
constraint applies to each camera-path pair, while the second
constraint applies to the path distribution as a whole.

Thus, joint path observability, considering the entire path
distribution and multi-camera system, can be described as
follows:
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Note that this is a unitless metric. If Op is multiplied by
the height and width of the image in pixels, it becomes a
pixel resolution metric of observability, as discussed above.

(a) Diagram of path observation.
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(b) Variables to minimize for each path.

Fig. 3. Camera placement relative to motion path.

IV. OPTIMIZATION

In order to use this formulation as a tool for camera
placement, it is first necessary to change our variables from
(dij, 055, Pi;), which describe the relative position and orien-
tation of the camera to the path, to those that describe the
absolute position and orientation of the camera (and path)
in the world (X¢,,Yc,,7s,,). Here (Xc,,Yc,) correspond to
camera position, and ~, corresponds to camera orientation
(yaw) about the Z axis. We parameterize each motion path
as follows:

N (©)
where ¢; is the orientation of the path j, (x;,y;) defines the
path center, and (x,;, ys;) is the starting point of each path.

Equations (7), (8), and (9) show (dj,0;;, ¢;;)in terms of
(Xe;s Yei,7z,,) for each camera-path pair. When Equations
(7), (8), and (9) are substituted into (5), the value of the
observability objective function can be determined for a given
camera position and pose in world coordinates.
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where
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We solve for the parameters (X.,, Y.,, .. ) through a
constrained nonlinear optimization process.

V. SIMULATION RESULTS

We have implemented the above formulation in Matlab.
We use the built-in function fmincon as the constrained
nonlinear optimizer. The optimizer is seeded with an initial
guess that is determined by sampling the objective surface.

Figure 4(a) shows the objective surface for the single
path case. The objective function increases as the position
approaches the path, up to the distance dy. (The objective
function is uniformly zero for all positions within dj of the
path center.) In addition, the objective function decreases as
the position moves away from perpendicular to the path.
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(a) Objective Function. (b) Solution.

Fig. 4. Objective function and solution for single path optimization.

The function has two optimum: one on either side of
the path. The simulation result confirms the intuition that
the optimal camera position to observe a single path is
perpendicular to that path, at a distance of dj.

Note that the multiple path objective surface in Figure 5(a)
looks very similar to the single path case. In this case, the
joint objective surface can be thought of as a sum of the
individual objective surfaces stacked together. Also note that
the height of the objective surface is much greater than for
the single path case.
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Fig. 5. Objective function and solution for multiple path optimization in

the case when all paths are parallel.

VI. EXPERIMENTATION
A. Equipment Setup

In this paper, we present an initial experiment that demon-
strates an active vision application of this work. We use a
single mobile camera to observe a moving subject as he walks
back and forth between two occluding screens. The camera is
initialized to an arbitrary position in the room, while ensuring
that all paths fall within the initial view. The system monitors
the paths taken through the scene, computes the optimal
camera position to view this path distribution, and moves to
the new goal position. Figure 6 shows the arrangement of the
experiment.
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Fig. 6. Overview of the experiment.

This experiment makes use of a modified ATRV-JR robot,
shown in Figure 7(a). The modifications include a custom
built “sensor mast” which allows the positioning of cameras
and other sensors at an elevated vantage point. A laptop is
mounted on the rear of the “sensor mast” to perform video
processing tasks that are too CPU intensive for the ATRV-JR’s
onboard systems.

The experiment required the integration of several systems
as shown in the diagram in Figure 8. Here, a firewire camera
(Sony DCR-TRV730) is used to provide a video stream to a
software module that captures video and tracks movement.

In order to estimate the paths of the subject’s motion,
the video was processed to segment the subject from the
background, compute the position of the subject in the frame,
and track the subject’s position over time. These paths are
shown in Figure 9. Segmentation was achieved through the

(a) Front View.

(b) Side View.

Fig. 7. The robotic setup consisting of an ATRV-JR and a “sensor mast”.
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Fig. 8. Block diagram ATRV-JR camera system.

use of a Gaussian mixture model-based adaptive background
segmentation algorithm. In addition, a Kalman filter was used
for tracking [20]. However, any resonably reliable tracker
would work well for this.

The tracking information is then passed to a Matlab pro-
gram which extracts path trajectories, estimates the param-
eters of each motion path, and uses the method described
in Section III to compute the optimal camera pose. Figure
10 illustrates the paths estimated from the position tracking
data. This is done using a linear least-squares fitting. The
new position is then transmitted as a location goal to the
robot. A player-client [10] receives the new location goal, and



through an interaction with a player-server, directs the motion
of the ATRV-JR to the optimal location. As the movement
of subject through the scene changes, the process repeats to
continually keep the camera in a location that provides the
optimal observability of the motion sequences.

Fig. 9. Paths of motion tracked in the image.

(a) Path lines projected onto the (b) Objective Surface.

ground plane (world coordinates).

Fig. 10. Path lines and resultant objective surface.

B. System Calibration

The camera was calibrated to determine its intrinsic param-
eters, and to determine the extrinsic parameters of the camera
with respect to the plane of the ground. We used the method of
Masoud et al. [12]. The calibration involved selecting parallel
and perpendicular lines in the ground plane in an image
(Figure 11). The result was a homography transformation
matrix between the camera’s image plane and the ground
plane.

C. Experimental Results

Figures 13 and 14 show results for one trial of the ex-
periment. The objective surface for this path distribution is
very similar to the simulation result for the multiple parallel
path case. Note, however, that the shape of the joint objective

Fig. 11.  Calibration setup. The calibration grid shown here was removed
for experiments.

(a) Initial View.

(b) Final View.

Fig. 12. Initial and final view of the camera during a run.
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(a) Path configuration at initializa- (b) Observed path configuration
tion. Camera is positioned to opti- relative to camera pose.
mize the view of this single path.

Fig. 13. Initial camera positioning and view of paths. Figures show camera
view frustum projected onto ground plane.

surface is not exactly circular, and is somewhat elongated
because of the shape of the actual path distribution. The
resulting view (Figure 12(b)) of the walking motion has
significantly improved observability from the initial view
(Figure 12(a)).

(a) Solution shown with path distri- (b) Solution shown with the objec-
bution. tive surface superimposed onto it.

Fig. 14. Camera positioning solution for joint path observability optimiza-
tion. Figures show camera view frustum projected onto ground plane.

Table I shows the results of six experimental runs with the
mobile robotic platform. The first row shows the observability
value of the motion sequences, measured from the initial
camera position. The second row shows the observability
value of the motion sequences, measured from the final
camera position. The third row shows the improvement due
to the new camera pose. The fourth and fifth rows show
the theoretical maximum observability of the sequences, and
the difference between the theoretical and final (optimized)



values.

Note that while none of the final positions of the camera
reached optimal observability, all runs showed significantly
improved observability. We believe that the differences be-
tween theoretical maximum observability and our results are
due to a combination of robot positioning error and path
estimation error. Robot (and therefore camera) positioning
error was introduced because of imprecision in the robot’s
odometry. In our experiments, the robot consistently demon-
strated positioning errors of 5 to 25 cm at its final position.
We believe this comprised the major source of error for our
system.

Path estimation may have also contributed to the overall
error. Each path taken by the subject is tracked over time.
Small errors in the position estimates of the subject in each
image would cause minor errors in the path estimates. In
addition, there is some inherent error in estimating the paths
by line fitting.

TABLE 1
OBSERVABILITY RESULTS.

Trial
Observability 1 2 3 4 5 6
Initial Position 0.55 | 0.63 | 0.58 | 0.54 | 0.59 | 0.50
Final Position 0.69 | 0.88 | 0.85 | 0.80 | 095 | 0.78
Percent Improvement 25% | 40% | 47% | 48% | 61% | 57%
Theoretical Maximum 1.00 1.00 1.00 1.00 1.00 1.00
Diff. from Theoretical | 0.31 0.12 | 0.15 | 0.20 | 0.05 | 0.22

VII. CONCLUSIONS

We have presented a novel analytical method for computing
optimal camera position and pose for task observability. The
general formulation was applied to the problem of human
activity recognition. This approach was validated in both
simulation and real-world experiments involving a single
camera observing a subject moving through a scene. Our
findings indicate that this method can significantly improve
task observability for human motion studies, and may be used
to guide proper camera placement in dynamically adapting
scenes.

VIII. FUTURE WORK

There are many areas in which this work can be extended.
One area of particular interest is the coordination of multiple
robotic systems used to optimally place multiple cameras.
In addition, we plan to extend the formulation to study
observability in the presence of occlusions. We also plan
to test our approach in many other application areas such
as traffic monitoring, vision-based user interface design, and
indoor and outdoor surveillance.
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