Image processing
Image operations

• Operations on an image
 – Linear filtering
 – Non-linear filtering
 – Transformations
 – Noise removal
 – Segmentation
Linear Filters

• General process:
 – Form new image whose pixels are a weighted sum of original pixel values, using the same set of weights at each point.

• Properties
 – Output is a linear function of the input
 – Output is a shift-invariant function of the input (i.e. shift the input image two pixels to the left, the output is shifted two pixels to the left)

• Example: smoothing by averaging
 – form the average of pixels in a neighbourhood

• Example: smoothing with a Gaussian
 – form a weighted average of pixels in a neighbourhood

• Example: finding a derivative
 – form a weighted average of pixels in a neighbourhood
Convolution

• Represent these weights as an image, H
• H is usually called the kernel
• Operation is called convolution
• Properties:
 • Convolution is commutative.
 \[c = \alpha \otimes b = b \otimes \alpha \]
 • Convolution is associative.
 \[c = \alpha \otimes (b \otimes c) = (\alpha \otimes b) \otimes c = \alpha \otimes b \otimes c \]
 • Convolution is distributive.
 \[c = \alpha \otimes (b + d) = (\alpha \otimes b) + (\alpha \otimes d) \]
• Result is:
 \[R_{ij} = \bigoplus_{u,v} H_{i\cdot u, j\cdot v} F_{uv} \]
• Notice the order of indices
 – all examples can be put in this form
 – it’s a result of the derivation expressing any shift-invariant linear operator as a convolution.
Example: Smoothing by Averaging
Smoothing with a Gaussian

- Smoothing with an average actually doesn’t compare at all well with a defocussed lens
 - Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

For a filter size N by M,

\[
R_{ij} = \sum_{u=1:N} \sum_{v=1:M} H_{uv} F_i \cdot u, j \cdot v
\]

- A Gaussian gives a good model of a fuzzy blob
An Isotropic Gaussian

- The picture shows a smoothing kernel proportional to

\[H \sim \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

(which is a reasonable model of a circularly symmetric fuzzy blob)
Smoothing with a Gaussian
Differentiation and convolution

• Recall

\[\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \]

• We could approximate this as

\[\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x} \]

This is a convolution: (but it’s not a very good way to do things, as we shall see)

\[\frac{\partial h}{\partial x} = D_{i,u,j,v} F_{u,v} \]

• Now this is linear and shift invariant, so must be the result of a convolution.
Finite differences
Noise

• Simplest noise model
 – independent stationary additive Gaussian noise
 – the noise value at each pixel is given by an independent draw from the same normal probability distribution

For an image F, the measured value G:

$G_{u,v} = F_{u,v} + n_{u,v}$

\[n^{D} N(m,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-m)^2} \]

• Issues
 – this model allows noise values that could be greater than maximum camera output or less than zero
 – for small standard deviations, this isn’t too much of a problem - it’s a fairly good model
 – independence may not be justified (e.g. damage to lens)
 – may not be stationary (e.g. thermal gradients in the ccd)
$\sigma = 1$
sigma=16
Finite differences and noise

- Finite difference filters respond strongly to noise
 - obvious reason: image noise results in pixels that look very different from their neighbours
- Generally, the larger the noise the stronger the response

- What is to be done?
 - intuitively, most pixels in images look quite a lot like their neighbours
 - this is true even at an edge; along the edge they’re similar, across the edge they’re not
 - suggests that smoothing the image should help, by forcing pixels different to their neighbours (=noise pixels?) to look more like neighbours
Finite differences responding to noise

Increasing noise ->
(this is zero mean additive gaussian noise)
The response of a linear filter to noise

- Do only stationary independent additive Gaussian noise with zero mean (non-zero mean is easily dealt with)
- **Generalized Average (Mean):**
 - output is a weighted sum of inputs
 - so we want mean of a weighted sum of zero mean normal random variables
 - must be zero

\[
G_{u,v} = F_{u,v} + n_{u,v}
\]

\[
n \mathbb{E} \left[N(\mathbb{0}, \sigma^2) \right] = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x-\mathbb{0})^2}{\sigma^2}}
\]

\[
\mathbb{E} \left[w_i x_i \right] = \sum_{i=1}^{N} w_i = 1
\]

\[
R_{i,j} = \mathbb{E} \left[w_{i} w_{j} G_{u,v} \right] = \mathbb{E} \left[w_{i} w_{j} (F_{u,v} + n_{u,v}) \right]
\]

\[
R_{i,j} = \mathbb{E} \left[w_{i} w_{j} F_{u,v} \right] + \mathbb{E} \left[w_{i} w_{j} n_{u,v} \right]
\]

\[
R_{i,j} = \hat{F}_{u,v} + \mathbb{E} \left[n_{u,v} \right]
\]
Response linear filter to noise

Properties of sums of Gaussian random variables

\[\frac{1}{N} \sum_{i=1}^{N} n_i = \square \]

\[Var \frac{1}{N} \sum_{i=1}^{N} n_i = \frac{1}{N} \sum_{i=1}^{N} E[n_i^2] = \frac{1}{N} \sum_{i=1}^{N} \square_i^2 \]

- **Variance:**
 - recall
 - variance of a sum of random variables is sum of their variances
 - variance of constant times random variable is constant^2 times variance
 - then if \(\square \) is noise variance and kernel is \(w \), variance of response is

\[Var \sum_{u,v} w_{i,u} n_{u,v} = \frac{1}{N} \sum_{i=1}^{N} w_{i,u}^2 E[n_{u,v}^2] = \frac{1}{N} \sum_{i=1}^{N} \square_i^2 \cdot Var_{u,v} w_{i,u} n_{u,v} = \sum_{u,v} \square_{u,v}^2 w_{i,u}^2 \]
Filter responses are correlated

• over scales similar to the scale of the filter
• Filtered noise is sometimes useful
 – looks like some natural textures, can be used to simulate fire, etc.
Smoothing reduces noise

- Generally expect pixels to “be like” their neighbours
 - surfaces turn slowly
 - relatively few reflectance changes
- Generally expect noise processes to be independent from pixel to pixel
- Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric Gaussian
 - as this parameter goes up, more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed
The effects of smoothing
Each row shows smoothing with gaussians of different width; each column shows different realisations of an image of gaussian noise.
Gradients and edges

- Points of sharp change in an image are interesting:
 - change in reflectance
 - change in object
 - change in illumination
 - noise
- Sometimes called edge points

- General strategy
 - determine image gradient
 - now mark points where gradient magnitude is particularly large wrt neighbours (ideally, curves of such points).
There are three major issues:
1) The gradient magnitude at different scales is different; which should we choose?
2) The gradient magnitude is large along thick trail; how do we identify the significant points?
3) How do we link the relevant points up into curves?
Smoothing and Differentiation

• Issue: noise
 – smooth before differentiation
 – two convolutions to smooth, then differentiate?
 – actually, no - we can use a derivative of Gaussian filter
 • because differentiation is convolution, and convolution is associative
The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.