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Abstract

Vision-based tracking is a basic elementary task in many computer vision-based applications such as video surveillance and monitor-
ing, sensing and navigation in robotics, video compression, video annotation, and many more. However, reliable recovery of targets and
their trajectories in an uncontrolled environment is affected by a wide range of conditions exhibited by the environment such as sudden
illumination changes and clutter. This work addresses the problem of (i) combining information from a set of cues in order to obtain
reasonably accurate estimates of multiple targets in uncontrolled environments and (ii) a collection of data association methods for cues
containing less information for robust tracking through persistent clutter. Specifically, we introduce a novel geometric template con-
strained data association method for robust tracking of point features, while using the Joint Probabilistic Data Association (JPDA)
method for blob cue measurements. Extensive experimental validation of the tracking and the data association framework is presented
in the work for several real-world outdoor traffic intersection image sequences.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Multiple cue combination; Measurement error estimation; Expectation maximization; Data association
1. Introduction

Vision-based tracking is an important elementary task in
several computer vision-based applications including, vid-
eo surveillance and monitoring, sensing and navigation in
robotics, key-frame detection, video summarization, and
many more. As a sensing modality, the low cost and large
information contained in vision are often offsetted by the
large ambiguities present in the data, making localization
and tracking a very challenging task. This work addresses
the problem of multiple target localization and tracking
in general outdoor image sequences by using a family of
algorithms that make use of cue combination from multi-
ple vision-based cues and appropriate data association
strategies for the measurements.
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Tracking has been addressed as the problem of obtain-
ing target localization through multiple cues [1–4], robust
data association using multiple hypothesis [5,6], probabilis-
tic data association [7], as well as, non-parametric or parti-
cle filtering approaches as in [8,9]. Multiple cue based
methods assume that at least one of the cues provides accu-
rate localization of the target in each frame and thus ignore
the problem of ambiguous target measurement association
in the presence of clutter. On the other hand, methods that
explicitly address the problem of data association often
assume that some measurement of the target is always
available. In contrast to the aforementioned methods,
non-parametric estimators use a flexible model by sampling
from the target density, thereby, addressing the problem of
localization and tracking in clutter and missing measure-
ments at the cost of immense computational overhead.
Hence, though robust, these methods are limited in their
scalability to the number of targets. Additionally, owing
to the flexible model representation, there is a danger of
collapsing distinct targets to a single one.
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Cue Combination through Incremental Update
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Fig. 1. Tracking approach. Targets are initialized using blobs not
associated to any target. In each step, the measurements from blobs,
color, and features are combined incrementally. Occlusion information
derived from the blob tracker is used to constrain the results of color and
feature-based target localization.
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This work addresses the limitation of the aforemen-
tioned approaches to obtain a reasonably fast, yet
robust tracking for a large number of targets by com-
bining cue combination and data association in a sin-
gle systematic framework. The main contributions of
this work are: (i) an incremental, weighted cue combi-
nation method for combining heterogeneous measure-
ments; position and velocity from multiple vision
cues, such as motion segmented blobs, color, point fea-
tures, as well as image templates, and (ii) appropriate
data association strategies for the individual cues. The
data association is integrated with the cue combination
to yield a single framework for target localization and
tracking. In addition, extensive experimental validation
of tracking in real outdoor image sequences is
presented.

While the use of multiple cues is similar to other
approaches [1–3], this work differs from the above men-
tioned work in the following respects:

(1) Cues are combined incrementally so that it is not
essential for all the cues to be available at a given
step. Also, not all cues provide measurement of the
same variable. For example, while blob and color-
based localization are used to obtain the position of
the targets in the image, point features provide the
velocity of the targets in image. In addition, we make
use of information such as occlusions inferred using
one cue to resolve ambiguities in another cue along
with a systematic evaluation of the measurement
errors.

(2) Appropriate data association for the individual
features is employed along with cue combination
to obtain a unique and robust tracking
framework.
1 In this work, geometric appearance refers to the local configuration of
features.
1.1. Tracking approach

Our basic approach to tracking is outlined in Fig. 1.
Targets are automatically initialized using the results of
blob tracking. Thus, a blob provides not only the localiza-
tion of a target in each frame, but also delineates the tar-
gets of interest. In order to eliminate false targets, the
following two heuristics are used:

(1) Only those blobs moving with at least a minimum
velocity and having been successfully tracked for a
few consecutive frames are initialized as targets. The
minimum velocity assumption and the successful
tracking assumption prevents erroneous foreground
regions resulting from segmentation errors from
being initialized as targets.

(2) Only those targets that have a distinct color distri-
bution compared to the surrounding background
are initialized. This is based on the assumption
that all true targets differ from the background in
color.
As shown in Fig. 1, three different cues, namely, blobs,
color, and point features are used to represent the targets.
Additionally, a template of the target blob region is used in
conjunction with the other cues by a voting-based cue com-
bination method as in [1] for comparison with our tracking
approach. The target motion is modeled using a simple
first-order or constant velocity motion model. By using
one or all the three cues (as they are available), each tar-
get’s state (position, velocity) in the scene is estimated using
an extended Kalman filter. Measurements from blobs and
point features are refined using two different data associa-
tion methods as described in Sections 4.1 and 4.2.

1.2. Paper outline

This paper is arranged as follows: after introducing the
problem in Section 1, the individual tracking modalities
are discussed in Section 2, and Section 3 discusses the the-
ory of cue combination. Details of the data association
methods for blob and feature tracking are in Section 4. Sec-
tion 5 presents the experimental results and Section 6 pre-
sents the discussion of results. Finally, Section 7 concludes
the paper.

2. Tracking method

Targets are detected using blobs or foreground regions
obtained through an adaptive background segmentation
approach [10]. Once initialized, the target’s color and its
geometric appearance are constructed from the image
region enclosed by its associated blob.1 Both the color
and the geometric appearance model are adaptive and are
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replaced when the corresponding model can no longer pro-
vide meaningful localization.

The target state consists of ½x; _x; y; _y�, namely, the posi-
tion (x,y), and velocity ð _x; _yÞ in the scene coordinates. An
extended Kalman filter model estimates the target state
through an incremental incorporation of each cue. This
corresponds to a sequential update of the filter state [11],
where the individual measurements are incorporated in
the order of arrival.

2.1. Blob tracking

Blobs serve the dual purpose of localizing and initial-
izing the targets of interest. The two main issues that
arise when using blob measurements include, (i) ambigu-
ity in the interpreted blob-target associations, and (ii)
the difficulty in quantifying the error in each
measurement.

2.2. Data association ambiguity

Data association ambiguity typically arises from:

• Errors in the background segmentation resulting from
sudden illumination changes, camera motion, target
stalled for a long period of time, random image noise,
etc., and

• Occlusions, background as well as foreground.

Commonly used methods address the data association
ambiguity by applying one of the methods described in
[6,7,12]. Given the real-time tracking constraints, we use
the joint probabilistic data association method for comput-
ing the target-blob associations. The method is based on
computing the probability of a blob measurement z arising
from a target, given its current position estimate x̂ and the
current state covariance R at time t obtained through the
Kalman filter estimation:

pðzjx̂Þ ¼ 1ffiffiffiffiffiffi
2p
p

Rd=2
eð�0:5�½z�x̂�0R�1½z�x̂�Þ ð1Þ

where d is the dimension of the target position (which in
our case is 2).

2.3. Measurement errors

The error in blob measurements arises due to errors in
blob segmentation. Directly quantifying these errors sole-
ly based on the changes in the blob area is not accurate.
Hence, we estimate these errors empirically using the
standard Expectation Maximization approach. The input
to the EM algorithm consists of manually selected target
trajectories containing little or no occlusions. As such,
the measurements obtained from occluded blobs are
assigned an arbitrarily large error so that such measure-
ments are discounted in comparison to more reliable
measurements.
2.4. Color: mean shift tracking

Target color contains more information about the tar-
get, thereby making localization easier. Ambiguities arise
when the occluding targets share a similar target distribu-
tion or when the target is passing under regions with signif-
icant illumination changes. The mean shift algorithm
proposed by Comaniciu et al. [13] is used for localizing
the targets using color.

The color model is automatically initialized from the
blob region associated with the target. In order that only
the salient parts of the target are captured in the model,
portions of the blob distinct from the background are
weighed more heavily compared to those parts similar to
the background. The target model is replaced by a new
one when the old model can no longer provide meaningful
localization.

The basis of the tracking method consists of matching a
stored model of the target Tm with a candidate model Tc (y)
computed around a region y. The match is computed by
using the Bhattacharya coefficient as,

dðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ðT cðyÞ; T mÞ

p
ð2Þ

where the function f (.) is chosen as,

f ðT cðyÞ; T mÞ ¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T cðyÞiT i

m

q
ð3Þ

and m is the number of histogram bins chosen to represent
the color distribution. The target and the candidate model
are computed as,

T m ¼ C
XN

i¼1

kðkuik2Þd½bðuiÞ � l� ð4Þ

T c ¼ C
Xnh

i¼1

k
y � ui

h

��� ���2
� �

d½bðuiÞ � l� ð5Þ

where the set of pixels in a region are represented as u1,. . .,N

or u1;...;nh for a target model and a candidate location y, b(.)
is a function that maps a pixel value at a given location to
the corresponding bin of the color histogram, the term d is
the Kronecker delta function which computes the probabil-
ity of the pixel value belonging to the target model
l = 1, . . . ,m, and h is the scale of the target represented in
the x and y coordinates. To account for the changing scale
h of the target, as it moves closer to or farther away from
the camera, the scale is recomputed in each frame as long
as the target is not detected to be occluded.

The error in color measurement arises from (i) the error
in position localization, and (ii) error in the region size used
for computing the match. This results from inaccuracies in
the choice of the scale. Hence, in this work, the measure-
ment error is computed as a function of position and scale.
For this, we use the Sum-of-Squared Differences (SSD)
error metric as described in [14,13] where a scaled Gaussian
distribution of the SSD matches around a target location is
fit and the variance of the Gaussian corresponds to the



Fig. 2. Comparison of average lifetime of SIFT features matched using normalized correlation and SIFT descriptor matching. As can be seen, both SIFT
descriptor-based matching and normalized correlation-based matching lose most of the features after frame number 40 (around 70–80%) thereby,
requiring re-initialization of new features. The x-axis corresponds to the number of frames, while the y-axis represents the average number of features
normalized to the range 0–100.

2 Computing SIFT descriptor matching requires the computation of
several convolution operations in different octaves, followed by non-
maxima suppression and nearest neighbor matching, all of which are
computationally intensive, thereby, resulting in very slow frame rates of
the tracker.
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error in the localization. In our formulation, this Gaussian
is fit by computing the SSD match across both position and
scale as,

e ¼
X

h

X
x

X
y

½ssdh;x;y � ssdl�½ssdh;x;y � ssdl�0 ð6Þ

where e is the measurement error, ssdl is the Sum-Squared-
Difference error at the mean target location l, h are the dis-
crete scales, x and y are the discrete locations along the x

and y coordinates. Since the error does not change signifi-
cantly between every individual pixel, a discrete step size
dw is chosen for the x and y positions.

2.5. Feature and geometric appearance tracking

The collection of features on a target provides the mea-
surement of its image velocity. As the target moves in the
scene, new features are initialized to replace those lost
due to target pose changes and mistracking. An adaptive
geometric template enforcing the rigidity constraint
between pairs of features resolves the data association
ambiguities in localizing point features. Details of the data
association method are discussed in a later Section 4.2.
Scale Invariant Feature Transform (SIFT) [15] is used for
detecting the salient features on the target. However, given
that the targets are non-static and exhibit large rotations
and translations, any feature matching method is bound
to fail after a few frames since the features are completely
out of the camera view. Fig. 2 shows a comparison of the
average lifetime of SIFT features matched using normal-
ized correlation and SIFT descriptor matching. As can be
seen, a large fraction of features, about 83% of the features
are lost by frame 60 by both the matching methods, requir-
ing re-initialization of new features. Hence, in favor of the
computational speed, normalized correlation of the key-
point feature templates are used for subsequent matching.2

Each feature is tracked in the image coordinates using a
first-order discrete Kalman filter as:

xtþ1

ytþ1

� �
¼

xt

yt

� �
þ

dxt

dyt

� �
þ w ð7Þ

where (dxt,dyt) corresponds to the displacement of the
point at time t and w is some random Gaussian noise in
the model. The state of the filter consists of ½x; _x; y; _y� where
x,y correspond to the position of the feature in the image
while _x, and _y correspond to its velocity in the x and y

image coordinates.
The target’s velocity is obtained from the features as a

weighted average of the individual feature’s estimated
image velocity. Individual feature weights ai are obtained
from the estimated velocity covariance of each feature ri

v

as,
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v ¼
XK

i¼1

ai _xi ð8Þ

ai ¼
1
ri

vPK
j¼1

1
rj

v

:

The individual feature measurement errors are computed
by fitting a scaled Gaussian distribution over the SSD
matches around the mean feature position as in [14].

3. Cue combination

Given a set of measurements arising from different cues,
democratic integration [16] is a straightforward way of com-
bining measurements from multiple cues. However, weight-
ing all the cues equally in general environments is not valid
since each cue varies in its performance with the scene con-
ditions. Besides it is not appropriate to weight heteroge-
neous measurements equally. Previous methods such as
[1,4,17,18] combine multiple homogeneous cues by weight-
ing the cue measurements based on their performance, there-
by developing a more realistic cue combination method for
general scenes. However, these methods often assume that it
is straightforward to compute the cue performance directly
from the image measurements and ignore the effects of
occlusions on obtaining reliable data association. This work
addresses the problem of cue combination in cluttered envi-
ronments by (i) applying a variable error-based cue combi-
nation, where the error in each cue measurement is
computed in each frame and (ii) including data association
with cue combination. The following Section 3.1 and Section
4 discuss error estimation and the data association in detail.

3.1. Error estimation

For each cue, the measurement error corresponds to the
extent of ambiguity present in its measurement. While this
error can be computed directly for some cues such as color
and features (based on a computable distance measure such
as the similarity of the color histograms, the local image
template with the stored target model, or some feature
descriptors), it is not so trivial in the case of cues such as
blobs which lack target specific information. The error in
the nominal blob measurements are thus computed empir-
ically using an Expectation Maximization approach as dis-
cussed in the following paragraph.

3.1.1. Blob error estimation

The problem of estimating the measurement error
covariance R is cast as a parameter estimation problem
for a linear dynamic system:

X t ¼ AtX t�1 þ Qt ð9Þ
Y t ¼ HtX t þ Rt ð10Þ

where At,Ht correspond to the state and observation tran-
sition, while Qt,Rt correspond to the state and measure-
ment error covariances. The problem consists of
estimating the values of the system and measurement error
covariances given a set of trajectory sequences. Since, we
are interested only in the unoccluded blob measurement er-
rors, only sequences free of occlusions are used for estima-
tion. The basic problem of estimation consists of
computing the joint density of the state variable X and
the observation Y in the E-step of the EM algorithm.
For details of the EM-based state estimation interested
readers can refer to [19,20].

log PðX ; Y Þ ¼ �
XK

t¼1

1

2
½Y t � HX t�TR�1½Y t � HX t�

� �
� K

2
log jRj

�
XK

t¼2

1

2
½X t � AX t�1�TQ�1½X t � AX t�1�

� �

� K � 1

2
log jQj � 1

2
½X 1 � X 0�TP�1

0 ½X 1 � X 0�

� 1

2
log jP 0j �

KðD1þ D2Þ
2

log 2p ð11Þ

where X0 and P0 correspond to the initial state estimate
and the state covariance. D1 and D2 correspond to the
dimension of the state and observation vectors, respective-
ly. In short, the E-step of the EM algorithm consists of
computing the likelihood of P (X,YjY) while the parame-
ters of the state space model are estimated in the M-step.
Skipping details of derivation, the measurement or obser-
vation covariance Rn and the system covariance, Qn for
N sequences of length K1,K2, . . . ,KN are given by the fol-
lowing equation:

Rn ¼
1

N

XN

i¼1

1

Ki

XKi

t¼1

½Y t � HX t�T½Y t � HX t� þ HP tHT

Qn ¼
1

N

XN

i¼1

1

Ki�1

XKi

t¼2

ðP t � 2AP t�1 þ AP t�1ATÞ: ð12Þ

Estimation consists of an iterative computation of the
joint likelihood, based on the smoothed state estimates in
the E-step, Eq. (11) and the updated parameters, R and
Q computed in the M-step, Eq. (12). Fig. 3 shows the log
likelihood surface plot obtained at the end of the EM pro-
cedure for the measurement error and system error covari-
ance. The likelihood surface is depicted for the errors in x

and y positions for both error covariances, (R,Q) in image
coordinates. Since the estimation of the error covariance is
done in the image coordinates, the system error covariance
is transformed to the corresponding error in the scene coor-
dinates for different target positions.

3.2. Derived information-based cue combination

Occlusions inferred from a cue can be used for con-
straining the measurements obtained from other cues.
For instance, no explicit data association is applied for
measurements obtained from color-based localization since
ambiguities arise only when targets with similar color dis-
tribution participate in an occlusion. In such a case, infor-
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Fig. 3. Log likelihood estimates of measurement error. The surface plots correspond to the log likelihood of the errors in (x,y) positions for the
measurement and system error expressed in the image coordinates, obtained at the end of EM procedure. x- and y-axis correspond to the error in x and y

coordinates (in pixels), while the z-axis corresponds to the log likelihood obtained in the E step.

126 H. Veeraraghavan et al. / Computer Vision and Image Understanding 103 (2006) 121–138
mation about an occlusion is useful in interpreting the mea-
surements obtained for the targets from the color cue.
Occluding targets are detected from the blob cues as a
result of data association. Targets detected as sharing one
or more measurement with other targets are flagged as
occluded for the mean shift tracker based localization. Sim-
ilarly, the measurements arising for features inside the
regions detected to be occluded are associated with a large
measurement error thereby, eliminating the effects of spuri-
ous matches.

3.2.1. Color measurements and scale adaptation

The target color match is obtained by matching the col-
or histogram computed around a region encompassing
each candidate location with the stored target model. The
size of the region or the scale used for matching should
be varied as the target moves towards or away from the
camera. Hence, the scale is recomputed in each frame
except during occlusions or for periods when no measure-
ment is obtained for the target from color. Occlusions are
detected using the blob tracking as explained in the previ-
ous paragraph. The new scale hnew update can be summa-
rized as,

hnew ¼
hcurr � ð1� aÞ þ hold � a; if no occlusion

hold; otherwise

�

ð13Þ
where hcurr is the scale computed at the current time step,
hold is the scale computed from the past frames, and a is
the chosen weight. Note that under some circumstances,
where only two targets participate in an occlusion, this
can be used to infer the relative depth of the targets.

4. Data association

The problem of data association is well addressed in the
tracking literature [11,6]. This problem is particularly
severe in the case of cluttered scenes especially when using
cues contain very little information particular to the target.
Two such cues used in this work, include, blobs and
features.

4.1. Blob-target data association

In this research, we make use of the Joint Probabilistic
Data Association (JPDA) filter [7]. The solution to the data
association problem is formulated as computing sets of valid
target-measurement pairs with the constraint that no two
targets share a measurement, and each measurement has
only one unique target in each joint target-measurement
association event. The probability of a joint event, X (t) at
time t, given the set of measurements Z1, . . . ,Zt from
1, . . . , t for a given set of target states X1, . . . ,XN is given as,

PðXðtÞjZtÞ ¼ cp½ZtjXðtÞ;X t�P ðXðtÞÞ ð14Þ

where c is a normalization constant. Note that, this method
assumes that the measurements arise from the set of known
targets alone. This is not true in our case, since measure-
ments might arise from uninitialized targets due to delayed
track initiation which can result in mistracking in some
cases. This is currently addressed through gating the mea-
surements using a Mahalanobis distance gating before
computing the target measurement association probabili-
ties using the JPDA method.

4.2. Adaptive geometric template constrained feature data

association

Although image features provide robust and a computa-
tionally simple way of determining target motion, it is dif-
ficult to accurately localize point features when they are
located close to each other or during occlusions. Hence,
we employ a geometric template that constrains the motion
of a feature by its local spatial configuration with respect to



Table 1
Algorithm for computing data association for features

Set Hypothesis of all features to estimated

compute total node residual NDmin

STEP I:

for each feature i <- 1 to N

Hypothesis(i) <- alternate(Hypothesis(i))

compute total node residual Ndnew

if(Ndnew < Ndmin)

Ndmin <- Ndnew

alteredFeature <- i

else

Hypothesis(i) <- alternate(Hypothesis(i))

end

push(Stack, alteredFeature)

push(alteredList, alteredFeature)

STEP II:
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other features. Essentially, a common motion constraint is
enforced on the features to obtain robust data association.

4.3. Geometric template

The geometric template consists of a spanning tree con-
necting the set of features on the target. While a fully con-
nected graph or clique-based representation of features will
allow us to enforce a stronger constraint on the motion of
features with respect to each other, currently, we chose a
spanning tree representation for ease of implementation
and computational speed in the estimation. The template
as illustrated in Fig. 4, is also adaptive to newly added
and removed features from the target. Furthermore, since
only the features that are contained in the template for a
target are used for providing the target velocity, this
method also provides a novel method for eliminating fea-
tures not belonging to the target. The geometric template
is briefly discussed in Section 4.3 while the data association
method is discussed in Section 4.4.

Furthermore, since no prior model need to be specified
for a target, the template can be generalized for modeling
any rigid object.

4.4. Geometric template-based data association

Under the assumption that the tracked targets are rigid,
the deformations in the geometric template will be restrict-
ed to slight changes in the spatial relations between the fea-
tures on the target. Hence, the problem of data association
consists of finding the set of measurements in a given frame
that minimizes the extent of deformation in the template.
This is the same as maximizing the joint likelihood of all
the measurements given the appearance. This can be
expressed as,

KðaÞ ¼ pðZjaÞ ¼ pðz1; z2; . . . ; znjaÞ ð15Þ
where K(a) is the likelihood of the appearance, and
Z = {z1,z2, . . . ,zn} is the set of measurements for N fea-
tures on the template, and a is the appearance. Since each
feature measurement is obtained independent of one
another, Eq. (15) can be written as,
Fig. 4. A geometric template imposed on targets. The template consists of
a spanning tree connecting the individual features on the target.
KðaÞ ¼
XN

i¼1

XN

j¼1;j 6¼i

pðzijaÞpðzjjaÞ ð16Þ

aML ¼ argmaxKðaÞ: ð17Þ

Thus, the maximum likelihood solution is obtained by the
maximum of the appearance likelihood for all the feature
measurements. The likelihood of a feature measurement
is computed based on the appearance and the estimate of
the feature motion as,

pðzi; x̂ijaÞ ¼pðzijx̂iÞpðx̂ijaÞ
¼Nðzi; x̂i;RiÞNðx̂i; a;RaÞ ð18Þ

where zi is the measurement for a given feature i, x̂i and Ri

are the estimated position and covariance associated with
the feature i, respectively. Ra is the estimated covariance
in the appearance a.

One nice property of this relation is that in the worst
case, where we have a very large uncertainty in the geomet-
ric apparance, the likelihood reduces to computing the
Mahalanobis distances of the individual feature measure-
ments. The algorithm for data association is described in
Table 1. As shown, each node is tested with two different
hypotheses: (a) estimated position at time t resulting from
inclusion of measurement for a feature i at time t, and
while(Stack is not empty)

alteredFeature <- pop(Stack)

for each feature (j <- 1 to m

connected to alteredFeature

& feature j is not in alteredList)

Hypothesis(j) <- alternate(Hypothesis(j))

compute node residual Ndnew

if(Ndnew < Ndmin)

Ndmin <- Ndnew

push(Stack, j)

push(alteredList,j)

else

Hypothesis(j) <- alternate(Hypothesis(j))

end

alteredFeature <- pop(Stack)

end

Alternate hypothesis for a node is predicted if the original hypothesis for
the node i is estimated and vice-versa.



ji
g

h

f

e b

c

d

a

Fig. 6. Feature removal. The features to be removed are indicated by
lightly shaded and clear circles. As shown, removal can be simply
performed by deleting the node and its associated link for a external node
like the clear circle, while removal of an internal node such as the lightly
shaded circle, requires addition of new links among the remaining
features.
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(b) predicted position resulting from the Kalman filters
propagation step at time t.

4.5. Geometric template adaptation

The geometric template consists of a tree structure
whose nodes are comprised of the point features on the tar-
get and the links connecting those features. A minimum
spanning tree is used to connect the features on a target.
Hence, for a target consisting of N features, the template
consists of N nodes with N � 1 links.

The geometric template deforms with target motion
owing to feature translation. The structure is altered by
(i) new features added to the target, (ii) removal of
untracked features, or when (iii) the template contains fea-
tures that do not truly belong to the target. The last case
arises from the initialization of features that were never a
part of the target, but were detected as part of the target
owing to errors in the blob segmentation. The template is
modified in each of the above cases either by: (i) addition
or removal of links, (ii) by replacing parts or the whole
template with a new template.

A new feature is added to a node closest to the feature as
shown in Fig. 5. In the case of (ii), the template is updated
by removing the links connected to the removed feature. In
order to maintain the tree structure, the appearance is
adapted by reconnecting the appropriate features. Fig. 6
illustrates examples for the removal of an internal node
indicated by the shaded circle, and an external node (clear
node). In this case, nodes are reconnected to preserve the
tree structure without constructing a new tree such that
the learned appearance model is not discarded. In the case
of (iii), the features that do not truly belong to the target
are removed from the appearance model. Such features
are those that consistently lie outside the targets blob
boundary. As mentioned in the previous paragraph, in
any of case (i), (ii), and (iii) only part of the template is
modified leaving the rest intact (other than the case when
the tree is completely reinitialized with a new template).
Hence, the estimates for the parts of the template contain-
ing the old links are preserved while new links are initial-
ized in the Kalman filter, using the covariance
Fig. 5. Feature addition. The new feature, indicated by light circle, is
added to the closest node in the template.
Rij ¼
ffiffiffiffiffiffiffiffiffi
RiRj

p
, where Ri and Rj are the covariances in the

position of the features i and j. The subscripts for x and
y coordinates are omitted for clarity.

The geometric template is estimated using a variable
state dimension Kalman filter. The state of the filter con-
sists of the spatial distances between the features forming
the links in the template. Since, only portions of the filter
state corresponding to the newly added or removed links
in the template are altered, the filter is merely augmented
or diminished rather than initializing a new filter on every
appearance update. A zeroth order motion model is used to
model the spatial constraint of features. The filter state and
transition matrices are expressed as,

X ¼

L1

L2

..

.

LN�1

2
66664

3
77775; A ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

2
66664

3
77775;

H ¼

0 �1 0 . . . 1

0 1 . . . �1 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . 1 �1

2
66664

3
77775

where X corresponds to the state of the filter and L1, . . .,
LN�1 are the link lengths or spatial distance between fea-
tures, A is the state transition matrix, and H is the observa-
tion transition matrix. Note that the dimensionality of H is
N � 1 · N since it transforms the individual feature posi-
tions to the links. The measurement error for the links is
expressed as a product of the error covariances of the fea-
tures forming the link.

5. Results

5.1. Experiment objective

The objective of the experiments was to validate the effi-
cacy of the proposed tracking method in real-world image
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sequences. Experiments evaluated the relative performance
of the proposed cue combination strategy with a voting-
based approach as in [1], and the performance of data asso-
ciation methods. In particular, the efficacy of the geometric
template-based data association was compared with a
Mahalanobis distance gated data association applied to
individual features.

5.2. Experimental setup

Experiments were performed in outdoor as well as
indoor video sequences obtained from a single camera
mounted at a fixed location in each scene. Experiments in
outdoor scenes used (a) a sparsely crowded color image
sequence, Fig. 7, (b) a medium to densely crowded color
image sequence, Fig. 9, (c) a medium crowded color image
sequence with a distant view, Fig. 8, and (d) a medium
crowded grayscale image sequence as shown in Figs. 10
and 20. Image sequences varied in length from 10 to
30 mins. The images were calibrated prior to the experi-
ments using [21]. The resolution of images were
320 · 240. The measurements of target position and veloc-
ity are obtained in the image coordinates and the target
state estimated in the scene coordinates. In all of the tested
sequences, there were occlusions between targets as well as
with the background.
a b

Fig. 8. Scene III: tracking in a crowded scene with stopped vehicles. The conto
the blob contour, the blob cue was missing.

a b

Fig. 7. Scene I: tracking with multiple occlusions. The geometric template de
undergo multiple occlusions with other targets and some partial occlusion wit
occlusion result in poor initialization, but as the target moves out of occlusion,
11 in (c), which was originally initialized as 9 with the truck in (a).
5.3. Experimental results

Hypothesis I: Weighted cue combination of all the avail-

able cues yields a more reliable tracker compared to a voting

or a combination using normalized [0–1] weighting. In order
to test the above hypothesis, we compared the results of
tracking using weighted cue combination with data associ-
ation and a voting-based cue combination approach as in
[1] in several outdoor traffic intersection video sequences.
Each sequence differed in the kind of intersection (T-junc-
tion, 4-junction), the distance from the camera, and traffic
density. In all these video sequences we tested the perfor-
mance of the system in the presence of occlusions and illu-
mination variations. For example, scene I as in Fig. 7 and
scene III as depicted in Fig. 8 were fairly cluttered with
occlusions (Scene I with around 44% and Scene III with
around 78%) from other targets or from background. Illu-
mination was not controlled in any of sequence as a result
of which, there were portions where the target color resem-
bled the background. Table 2 shows the comparison of the
tracking results on two different outdoor scenes for the pro-
posed weighted cue combination with data association
method with the multiple cue-based tracking method as
in [1].

Figs. 7–10 show examples of tracking multiple targets
using the proposed approach consisting of weighted combi-
c

urs around the vehicles indicate the blobs detected. For vehicles not having

c

rived from the features is overlaid on the targets. As can be seen, targets
h the traffic pole. Also seen is that the target templates initialized during
a more appropriate template is initialized as indicated by target numbered



Table 2
Comparison of tracking errors by the proposed method and voting-based multiple cue tracking method in the outdoor traffic sequences I and II

Scene Error Proposed method Error Vote-based tracking

Num targets % of targets Num targets % of targets

I Track lost 6 7.1 Track lost 21 24
Track switch 2 2.3 Track switch 3 3.5
Track drift 7 8.1 Track drift 3 3.5

II Track lost 25 5.3 Track lost 39 9.0
Track switch 20 4.6 Track switch 17 3.9
Track drift 18 4.1 Track drift 31 7.2

The total number of vehicles in scene I were 86 while in scene II were 432.

130 H. Veeraraghavan et al. / Computer Vision and Image Understanding 103 (2006) 121–138
nation of blob, color and feature cues with data associa-
tion. An example of tracking in an indoor scene are also
shown in Fig. 11. Figs. 12 and 13 show the comparison
(a) (b)

Fig. 10. Scene IV: tracking in a medium crowded grayscale image sequence. T
information.

Fig. 9. Scene II: tracking vehicles in crowded scenes. The contours correspond
due to oversegmentation resulting from an illumination change.

Fig. 11. Tracking pedestrians in an indoor scene. The pedestrians are tracke
of tracking errors, namely, the mean error in the position
estimate and the ground truth, and the variance in the state
estimates expressed as the trace of the state error covari-
(c)

racking is made more difficult in this sequence owing to lack of any color

to the blobs detected around the vehicles. Some of the contours are larger

d despite very similar background color and the occluding foreground.
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ance, respectively, for the proposed tracking method and a
voting-based cue combination method proposed by [1].

Hypothesis II: Reliable tracking can be achieved even in

the presence of persistent occlusions by using good data asso-

ciation methods. Given that the JPDA is a standard method
for computing data association, our experiments only eval-
(a)

(b)

Fig. 12. Mean error in tracking using the weighted cue combination with da
x-axis corresponds to the number of frames and the y-axis corresponds to the
uated the performance of the geometric template con-
strained data association method. In order to test the
geometric template constrained data association, the exper-
iments were performed using fairly crowded outdoor traffic
intersection image sequences. The input to the tracker con-
sists of velocity measurements obtained from the features
ta association tracker and voting-based multiple cue fusion method. The
mean error expressed in log scale.
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and position measurements obtained from standard
motion segmented blobs. However, the measurements from
features were weighted more heavily compared to the posi-
tion measurements in order to reduce the influence of the
blob tracker on the tracking.

Figs. 14–16 show the tracking errors for two different
targets for the following two cases: (a) feature measure-
(a)

(b)

Fig. 13. Variance in the error in tracking using the weighted cue combination w
The x-axis corresponds to the number of frames and the y-axis corresponds t
ments constrained using Mahalanobis distance-based gat-
ing applied to individual features, and (b) feature
measurements constrained using the geometric template.
The plots show the trace of the error covariance in the esti-
mated target state (position and velocity in the scene coor-
dinates) with time. As shown in Fig. 14, the error
covariance for the case where the feature measurements
ith data association tracker and voting-based multiple cue fusion method.
o the trace of the error covariance expressed in log scale.



Fig. 14. Tracking error for feature tracking using Mahalanobis distance, and feature tracking using the geometric template.

Fig. 15. Tracking errors for feature tracking using the Mahalanobis distance and geometric template constrained data association. The increase in error
for the Mahalanobis distance constrained feature tracker after frame 40 is the result of the tracker switching to another target during an occlusion.

H. Veeraraghavan et al. / Computer Vision and Image Understanding 103 (2006) 121–138 133
are constrained using the geometric template produces the
lowest errors even during occlusions. Similarly, in Fig. 15,
the increase in the error covariance after frame 50 for the
Mahalanobis distance gated features is the result of tracker
switching to another target, whereas, the geometric appear-
ance constrained tracker produces consistent results with-
out losing the target (Fig. 17).

Fig. 18 shows the trace of error covariance in the esti-
mates of a geometric template with time. The increase in
the error covariance in the beginning and the end of track-
ing occurs when new features are added thereby, changing
the template. Fig. 19 depicts the results of tracking two tar-
gets in an indoor sequence through an occlusion.

6. Discussion

6.1. Cue combination

Combining multiple cues using the voting-based method
essentially computes the weighted average of each measure-
ment from all the cues and is updated once on the Kalman
filter. Thus, for the position and velocity measurements,
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Fig. 16. Tracking errors for blob and feature tracking using the Mahalanobis distance, blob and feature tracking using the geometric template. As shown
in the figure, the former method produces a large error as the target was lost for a few frames. The reduction in the error for the Mahalanobis distance
based data association occurs after the frame 200 as the target is recaptured. On the other hand, the geometric template constrained method produces a
consistent and low error in the tracking throughout the occlusion.

(a) (b) (c)

Fig. 17. Scene II: geometric template constrained tracking of a turning vehicle in an outdoor scene.
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this method requires only two updates. In terms of algo-
rithmic complexity in comparison to our method, the com-
putation of the position measurements from each cue is the
same, except for the additional data association employed
for the blob and feature cues in our method and the addi-
tional Kalman filter updates required for each cue. Given
that the number of cues is small, in our case 4; blob, color,
feature, and an image template, the additional number of
filter updates is only two. As such, our proposed incremen-
tal multiple cue fusion with data association based tracking
achieves a tracking speed of 6–12 fps on a standard Pen-
tium PC depending on the crowd density in the scene.

In terms of tracking accuracy, the voting-based tracking
performs similar to the proposed method in the absence of
any occlusion and slight illumination changes. However,
the performance of the former method declines in the pres-
ence of occlusions and scene clutter. The results of tracking
for both the voting-based tracking and the proposed incre-
mental multiple cue combination with data association
methods are presented in Table 2.

As shown in Section 5, combining information from
multiple cues helps tracking under challenging conditions.
Figs. 20 and 21 show the results of tracking under two such
difficult conditions. In the case of Fig. 21, the movie used
for tracking was highly compressed as a result of which,
most information about the color of the targets was lost.
Further, the presence of outside illumination and inter-re-
flections resulting from rain, and exhaust fumes from the
vehicles made segmentation very difficult. Despite this,
the system gave reasonable tracking performance. Similar-
ly, in Fig. 20, although a grayscale image, we still get better
tracking results by combining blob and color cues.

Table 4 shows the result of tracking for the two outdoor
traffic video sequences, Scene I and Scene III as shown in
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Fig. 18. Errors in geometric template estimation.

(a) (b) (c)

Fig. 19. Indoor tracking sequence using blob and geometric features.

(a) (b)

Fig. 20. Example tracking in grayscale image sequence with occlusions.
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Figs. 7 and 8. The corresponding scene statistics for the two
sequences are in Table 3. The main sources of errors in target
detection (missed targets, total and partial) in all the
sequences resulted from the entry of multiple targets occlud-
ing each other. False positives or redundant segmentation
resulted from the over-segmentation of the targets. Over-
segmentation results during sudden illumination changes,
targets moving behind background parts, as well as from



(a) (b)

Fig. 21. Example tracking in a noisy video sequence with occlusions, strong illumination and inter-reflections.

Table 3
Scene statistics for outdoor traffic sequences I and III

Scene statistics I III

Num targets % of targets Num targets % of targets

Total number of targets 86 113
Persistent occlusions 13 15 67 59.3
Passing occlusions 25 29 22 19.5
Stopped/slow-moving 8 9 30 26.5

The statistics were collected through manual inspection of the video sequences.

Table 4
Detection and tracking errors in the outdoor traffic sequences I and III

Scene Error Detection errors Error Tracking errors

Num targets % of targets Num targets % of targets

I Missed Targets 1, 7 1, 8 Track lost 6 7.1
(total, partial)
False positives 4 4.6 Track switch 2 2.3
False negatives 8 9.3 Track drift 7 8.1

III Missed targets 5, 6 4.4, 5.3 Track lost 17 15.7
(total, partial)
False positives 1 0.9 Track switch 10 9.3
False negatives 5 4.4 Track drift 6 5.6
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specular reflections from the target such as the windshield.
Tracking failures mostly resulted from (i) occlusions, and
(ii) stopped targets being modeled into the background
which adversely affects the accuracy of the region segmenta-
tion. While the tracker can still continue to track a stopped
target despite the absence of information from the blob cue,
as the target moves, poor segmentation can result in track
loss in the presence of a large number of targets.

Occlusions are classified as persistent or passing based
on the duration of the occlusion. In all our experiments,
occlusions lasting longer than 100 frames were classified
as persistent occlusions, while occlusions lasting from 30
to 100 frames were classified as passing occlusions. As
can be seen from the results of tracking, the system
performs fairly well despite a large number of prolonged
occlusions and stopped or slow moving targets.

6.2. Data association

The use of joint probabilistic data association for track-
ing has been well studied in the previous works [11,12]. The
joint likelihood tracking method proposed by [22] helps
obtain a robust data association for multiple targets by
enumerating all possible depth orderings. However, when
required to compute all possible depth orders for n targets,
the number of hypotheses increases exponentially, thereby,
limiting the number of targets for which this method is
applicable without losing computational complexity. Fur-
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thermore, for cues such as blobs, where the individual mea-
surements themselves contain no information particular to
the target, computing the image likelihood term for the
data association is irrelevant.

As indicated by the results, geometric template con-
strained tracking helps attain a consistent tracking as well
as minimizes the covariance of the estimated trajectory in
comparison to the Mahalanobis distance constrained
tracking. In comparison to methods such as [23–25] that
compute a fundamental matrix through optimization, the
proposed approach requires no such optimization. Fur-
thermore, while the accuracy of the geometric template
based data association will improve in the presence of sta-
ble features and with a stable estimate of the geometric
appearance, there is no requirement for a large collection
of features. This method requires no prior knowledge of
the template. Thus, in comparison to adaptive mesh-based
methods, no explicit physical models are required. The use
of a loose appearance template to enforce the spatial and
motion constraints between features on a target is simple
and flexible. The enforced constraints are directly related
to the certainty in the appearance estimate. In the worst
case, when the appearance template has a large uncertain-
ty, the data association method degenerates to individual
feature measurement gating using the Mahalanobis dis-
tance. Tracking the features constrained by the geometric
appearance based data association improves the results of
tracking of the features significantly. Fig. 22 shows the
average life of features detected using the Harris corner
Fig. 22. Average feature life-time or the number of frames features for Harr
template constrained matching, and SIFT features using SIFT descriptors fo
number of features that were successfully tracked till the frames indicated in the
the range 1–100 for all the feature trackers.
with normalized image correlation based matching and
the SIFT features with the SIFT descriptor-based match-
ing. For the given application, where the features undergo
large translation and rotation, the geometric template con-
strained normalized correlation-based matching for Harris
features performs nearly as well as the SIFT feature track-
er. In fact as indicated in the Fig. 22, the geometric tem-
plate constrained matching helps us to track a small
number of features way beyond the time they are tracked
using the SIFT feature detector and the nearest neighbor
matching of the descriptors.

7. Conclusions and future work

This work presented a computationally simple, albeit
robust tracking method for general unconstrained scenes
using a set of simple trackers with appropriate data associ-
ation and derived information-based cue combination. In
particular, this work studied the problem of combining
cues weighted by the individual uncertainties in the mea-
surement through a Kalman filter framework. The results
obtained from extensive experiments conducted on three
different scenes indicate that reasonably good tracking
can be obtained even in scenes with a large number of tar-
gets and occlusions, as long as the errors in the individual
cues reflect the state of nature more or less accurately. The
presented method addressed the problem of data associa-
tion particularly for cues with low information such as
blobs and features using a joint probabilistic data associa-
is features and SIFT features with normalized correlation with geometric
r matching using nearest neighbors. The height of the bars indicates the
x-axis. The number of features represented in the graph are normalized in
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tion framework for the former, and a geometry constrained
data association coupled with the knowledge of occlusion
for feature tracking.

This work also considered the problem of tracking with
a very weak model of target appearance. While using a
motion segmented blob for initializing the target is compu-
tationally efficient, the main limitation of this approach is
differentiating between multiple targets entering the scene
occluded. This is one of the directions for future work.
Again, in this work, blobs are used for detecting occlusions
between targets as a result of data association. Occlusions
resulting from static background occluders cannot be
detected which can also affect tracking accuracy adversely,
especially if the occluder is large. The above mentioned
problems are being addressed in the current work.
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