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Abstract— This paper presents two different learning meth-
ods applied to the task of driver activity monitoring. The goal
of the methods is to detect periods of driver activity that are
not safe, such as talking on a cellular telephone, eating, or
adjusting the dashboard radio system. The system presented
here uses a side-mounted camera looking at a driver’s profile
and utilizes the silhouette appearance obtained from skin-color
segmentation for detecting the activities. The unsupervised
method uses agglomerative clustering to succinctly represent
driver activities throughout a sequence, while the supervised
learning method uses a Bayesian eigen-image classifier to
distinguish between activities. The results of the two learning
methods applied to driving sequences on three different subjects
are presented and extensively discussed.

I. INTRODUCTION

The goal of this project is to develop a camera-based

system for monitoring the activities of automobile drivers.

As in any system deployed for monitoring driver activities,

the primary goal is to distinguish between safe and unsafe

driving actions. An application that motivates this work is

objective reporting of a driver’s activities over long driving

periods, in contrast with subjective reports based on surveys.

Another interesting application is in the area of interior

vehicle design, where such information helps improve the

placement of controls in order to reduce unsafe driving

behaviors.

There is no fixed list of actions that qualify as unsafe driv-

ing behaviors. In general, an activity or an action that reduces

a driver’s alertness or awareness of their surroundings should

be classified as unsafe driving behavior. Some examples of

unsafe driving behavior include driver fatigue, talking on a

cellular telephone, eating, and adjusting the controls of the

dashboard stereo while driving.

In this work, we present methods for summarizing and

recognizing the activities of a driver, using the appearance

of the driver’s pose as fundamental cues. The position of the

hands, arms and the head vary across different activities, and

vary among individual drivers. While there is a lot of work in

driver activity monitoring through head and eye tracking [1],

[9], [10], [17], [13], [20], there is very little work that makes

use of the changes in the appearance resulting from the

motion of the driver inside the automobile.

The skin-tone regions of the input video are used as

the features in the classifiers. In the unsupervised method,

† Author to whom all correspondence should be sent.

binary skin-tone masks are agglomerated across an entire

action sequence to assign a probability of observing skin-

tones for each pixel in the image during the action. Action

sequences are separated from one another by detecting

substantial movements in the image, signified by large dif-

ferences between the skin-tone masks of sequential frames.

In the supervised method, key frames corresponding to safe

driving actions and unsafe driving actions are specified

by the user. These key frames are used for obtaining the

subspace densities corresponding to an individual action. In

this work, talking on a cellular telephone is classified as an

unsafe action. A Bayesian eigen-image method is used for

classifying the activities.

This paper is organized as follows: Section II discusses

the related work in this area. The unsupervised clustering

method is discussed in the Section III, while the supervised,

eigen-image classification method is discussed in Section IV.

The results and brief discussion of the results and future work

is in Section V, and Section VI presents the conclusions.

II. RELATED WORK

Most of the work on driver activity monitoring is focused

on the detection of driver alertness through monitoring

eyes [9], [10], [17], face, head, or facial expressions [1],

[13], [20]. In order to deal with the varying illumination,

methods such as [21] use infrared imaging in addition to

normal cameras. Learning-based methods such as [2], [19]

exist for detecting driver alertness and gaze directions. In our

work, both learning methods make use of the silhouette of

the subjects for detection of activity. Several silhouette-based

activity recognition methods exist in the literature such as the

motion history image method by [6], the W4 system by [8],

and the Pfinder system by [18]. The supervised learning

or the Bayesian eigen-image method is based on the face

recognition work of [11]. This method basically seeks a low

dimensional representation of the data for classification. Sev-

eral dimensionality reduction techniques exist, such as [3],

[4], [15], and the manifold learning methods in [5], [12].

An example of an unsupervised method for learning human

behaviors is presented in [14], where a maximum likelihood

method is used to learn the structure of a triangulated graph

of feature point-based human motions. In [7], the general

segment of the body region where significant motion takes

place is detected, and this information is used as a cue for

matching activities.
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III. UNSUPERVISED CLUSTERING OF DRIVING

BEHAVIORS

The most basic cue about a driver’s actions is his pose.

However, tracking a driver’s articulated motion in an environ-

ment with rapidly varying illumination and many potential

self-occlusions is prohibitive both in terms of computational

resources (for model-based tracking) and since the initial-

ization of an articulated model is non-trivial in an automatic

fashion. Our approach does not depend on an estimation of

a driver’s pose, but on the observation that periods of safe

driving are periods of little motion of the driver’s body. Of

course, a driver does not move much while talking on a

cellular telephone (an unsafe driving behavior), so the need

arises to classify periods of minimal motion into safe-driving

periods and unsafe-driving periods.

Detecting motion in a moving car’s interior is complicated

since the illumination of the interior can change very rapidly.

Furthermore, the outdoor environment is visible through

the car’s windows, so motion will be always detected in

the image regions corresponding to the car’s windows. To

address this problem, we only detect motion of skin-like

regions, for example a driver’s face and hands. This approach

is advantageous since skin color detection can be fairly

robust to various illumination conditions. Skin tones are also

unlikely to appear in the window regions, so motion in the

outside environment is unlikely to be detected. Portions of

the car’s interior that are misclassified as skin are static

and will contribute nothing to the detected motion, so such

regions are not problematic as well.

A. Skin Color Detection

We perform the classification of color pixels into skin

tones and non-skin tones by working in the normalized

RGB space. The normalization is effective against varying

illumination conditions, and can also be motivated by the fact

that human skin tones have very similar chromatic properties

regardless of race [16].

An RGB triplet (r, g, b) with values for each primary color

between 0 and 255 is normalized into the triplet (r′, g′, b′)
using the relationships:

r′ =
255r

r + g + b
, g′ =

255g

r + g + b
, b′ =

255b

r + g + b
. (1)

We classify a normalized color (r′, g′, b′) as a skin color if

it lies within the region of normalized RGB space described

by the following rules (found in [16]):

r′ > 95, g′ > 45, b′ > 20
max{r′, g′, b′} − min{r′, g′, b′} > 15 (2)

r′ − g′ > 15, r′ > b′

Fig. 1 shows the results of the skin color detection for

various subjects and lighting conditions.

It should be noted that other skin-tone detection method

can be used without affecting the rest of the algorithm.

We tried using a non-parametric Bayesian skin probability

map as an alternative approach, but its results were of

Fig. 1. Skin color detection (bottom row) on various images (top). Skin
color is indicated in black. The results are post-processed by a sequence of
morphological erosions and dilations.

unsatisfactory quality as the number of training images used

to create the map was small and the images themselves were

obtained under radically different lighting conditions than

those during our driver monitoring experiments. However, if

a better skin-color detection method is available, it can be

substituted in favor for the rule-based one.

B. Detecting Changes in Behavior

Since our goal is to detect and classify relatively motion-

free periods, we use inter-frame differencing to decide when

a period starts and ends. If the change between two consec-

utive skin-color masks obtained by the color classification

step is significant, the current low-motion period terminates.

When the interframe difference drops, we start accumulating

data about a new low-motion period.

Given the image region R, the change between two

consecutive binary skin-color masks It−1 : R → {0, 1} and

It : R → {0, 1} is described by the total number of pixels

whose classification changed:

c(t) =
∑
p∈R

|It(p) − It−1(p)|

Whenever c(t) is large, a transition in driver behavior is

detected. A global threshold cannot be used to determine

whether the change c(t) is significant or not, since different

low-motion actions differ in the typical amount of “natural”

motion that occurs throughout the action. Additionally, the

amount of noise in the skin classification masks may differ

from one run of the algorithm to another. Finally, the

significance of a change c(t) depends on how much of a

driver’s skin is exposed. For these reasons, we chose to have

a relative threshold for c(t)’s significance that depends on

the observed variation in c(t) over a period of time.

Assuming that a low-motion period started at time t1,

we consider the change at time tn significant if c(tn) is

more than 2 standard deviations away from the mean of

the changes c(tn−w), c(tn−w+1), . . . c(tn−1), where w is the

history window size (set to 900 frames, which corresponds

to 30 seconds of past activity). Both the mean and standard

deviations are computed incrementally. Since we start record-

ing data for a new action immediately during the onset of

the significant change, the deviation in the first few samples

(i.e. c(t1), c(t2), . . .) is larger, which limits the number of

spurious short periods identified by the algorithm. This is
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advantageous since the sequence of images leading to a low-

motion action will contribute to the action model and thus

will allow us to distinguish between otherwise similar low-

motion periods based on information about the high-motion

events that preceded them.

C. Action Models
The change in the binary skin tone masks indicates the

need to start recording an action model. Each action model

is simply a probability map that describes the expectation

of observing a skin-color at every location in the input

images. Given the binary skin masks It1 , It2 , . . . Itn
for a

low-motion action with duration from time t1 until time tn,

the probability map P is defined by:

P =
1
n

tn∑
t=t1

It (3)

Fig. 2. Skin probability maps for several action clusters (representing more
than 80% of the driver’s activity). Darker regions indicate higher probability
of observing skin tones.

Sample probability maps for several actions are shown in

Fig. 2. Individual actions that are determined to be similar

are merged together into clusters. The goal of the clustering

is to produce clusters that correspond to a single type of

behavior (safe or unsafe). Such clustering facilitates further

analysis of a driver’s activities as it reduces tremendously

the amount of data that needs to be analyzed (thousands of

video frames versus tens of activity models). The similarity

between an action model P and an action model Q is defined

as:

d(P,Q) =
∑

i∈R

√
P (i)Q(i)√(∑

i∈R P (i)
) (∑

i∈R Q(i)
) (4)

The measure is the Bhatacharya coefficient for two nor-

malized histograms, and ranges from 0 to 1. A high simi-

larity measure corresponds to similar action models, while

a low measure corresponds to dissimilar models. A model

is compared to the means of all clusters and merged with

the most similar one if the similarity measure exceeds a

certain threshold. Since we cluster according to the distance

to the mean (rather than the mean distance), each cluster can

be represented by a single action model. The models P is

merged into a cluster represented by the model Q according

to:

Q(i) ← n

n + m
P (i) +

m

n + m
Q(i), (5)

where n and m are the number of video frames represented

in P and Q, respectively.

IV. BAYESIAN EIGEN-IMAGE ACTIVITY CLASSIFICATION

For a side-mounted camera, the significant observable

motion is the motion of the driver’s hands in the image.

However, one important issue with using hand motions is

the problem of self-occlusion for extended periods of time

and the resulting pose ambiguity. This problem precludes the

use of region-based hand-trackers to detect hand motion and

position. Instead, a snapshot representative of a particular

action is used as the classification feature.

A. Training Method

The goal of training is to find a representation for the

images of a given class. Essentially, we want to find a

low dimensional representation for the data Several methods

such as the Karhunen-Loéve Transform, Principal Compo-

nent Analysis, and eigenimages exist for computing the low

dimensional representation. We use the eigen-image method

originally proposed by [15] for face recognition and extended

later on by [11]. The method’s robustness to illumination

variations and self-occlusions can achieved by using multiple

suitable training images.

(a) Largest eigenvector for
drive activity

(b) Largest eigenvector for talk
activity

Fig. 3. Largest eigenvectors for drive and talk class.

For a given set of images corresponding to a given

class, the largest eigenvalues and eigenvectors represent the

distribution of the data along the most significant component

direction. This is the basis of this method. For the given set

of images, I1

i , . . . , IK
i belonging to a class Ci, an eigenvalue

decomposition is performed to obtain Σi, the eigenvectors for

the class Ci. This operation is performed off-line for each

class of images. Fig. 3 shows the second largest principal

eigen-image for the talk and drive actions.

Fig. 4. Input image for training.
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A typical image used for training is shown in Fig. 4. As

shown in Fig. 4, only the skin portions of the image are

chosen for training. The skin regions are detected automati-

cally using the method described earlier in Section III. This

removes irrelevant portions of the image from consideration

during training. Further, since only the skin portions corre-

sponding to the hands and face are significant for the two

classes, any skin segments around the leg regions are masked.

This step helps reduce the dimensionality of the data, thereby

improving the accuracy of the training with fewer training

samples.

Fig. 5. Distribution of the two classes under three largest principal
components (starting from the second highest). The safe driving class is
represented by circles and the unsafe driving class is represented by crosses.

Fig. 6 shows the effect of the number of training samples

on the accuracy of classification for all samples belonging

to the talk action. The number of correctly classified and

misclassified images for different training sample size is

shown in Fig. 6. Based on 6, we chose a sample size

of 40 where the number of correctly classified samples is

maximized and the number of incorrectly classified samples

is minimized. Fig. 7 shows the results of classification for

samples containing the driving action for different sample

sizes. Finally, Fig. 5, shows the distribution of the two

classes along the three principal components. The largest

eigenvalues and eigenvectors capture the largest variation

within a class. However, given the small training data size

compared to the dimensionality of the data, the errors in

skin segmentation are also modeled. Hence, we take the

eigenvalues and eigenvectors starting with the second highest

principal component for classification.

B. Activity Classification

The activity in each frame is evaluated by computing its

similarity with the set of training images for each activity

class. A probabilistic measure of similarity is used instead

of the usual Euclidean metric. Given a candidate image Ix,

its similarity to an image Ij
i from class Ci is computed by

projecting the difference of the two images, µ = Ix − Ij
i

Fig. 6. The results of classification for the training images of the unsafe
driving class.

Fig. 7. Classification results for the safe driving class on the training set.

onto the principal eigenvectors of class Ci. This can be

represented as,

P (µ|Ci) =
e−

1
2 µT

Σiµ

(2π)d/2|Σi|1/2
, (6)

where Σi contains the largest eigenvectors for class Ci and d
is the dimensionality of the data. This operation is repeated

over all member images of a class until a maximum score is

found. For recognizing the activity, this operation needs to

be performed over all the training images in all the classes.

This computation can be very expensive as the number of

classes and the number of images increases. To reduce the

computational burden, an off-line whitening transformation

is performed as described in [11]. Each of the I1

i , . . . , IK
i

images in class Ci are transformed using the eigenvalues

and eigenvectors:

imj
i = D

− 1
2

i SiI
j
i , (7)
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where Di and Si are the eigenvalues and eigenvectors

computed for the class Ci . Given these pre-computed

transformations , the match for a new image Ix is computed

as:

P (µ|Ci) =
e−

1
2‖imx−imj

i‖2

(2π)d/2|Σi|1/2
, (8)

where imx is the transformed image of Ix computed from

the eigenvectors and eigenvalues of Ci as in Equation (7).

The activity in a frame is classified as safe driving or

talking based on the relative values of P (µ|Driving) and

P (µ|Talking). Activities having almost equal probabilities

for both classes, are rejected and not classified as belonging

to either class. That occurs when the probability of associa-

tion is in the range from 0.45 to 0.55.

V. RESULTS AND DISCUSSION

A. Experimental Setup

Test data for the methods is comprised of three exam-

ple videos of individuals pretending to drive a stationary

automobile. The video camera used to record the videos

was placed on a tripod directly outside the passenger-side

window viewing the driver in profile. Each video features

a different individual sitting in the car pretending to drive;

different ethnicities and genders are represented. The lighting

conditions vary throughout the videos as the car was in an

outdoor parking lot. Each of the three videos is about six

minutes long (between 10,500 and 11,000 frames), full-color,

and at full 720 × 480 resolution.

During the course of each video, the driver goes through

periods of driving normally and performing distracting ac-

tions. Distracting actions include talking on a cellular tele-

phone, adjusting the controls of the dashboard radio, and

drinking from a soda can. These actions were chosen as the

unsafe behaviors to test for because they are very common.

B. Activity Clustering

The goal of the clustering method is to produce as few

activity clusters as possible, while not merging together

safe and unsafe activities. If safe and unsafe activities are

merged together, the subsequent classification of clusters into

safe and unsafe activities will introduce errors. If too many

clusters are created, the method would have failed its goal to

summarize a driver’s activities. We tested the method using

different settings for the similarity threshold. Table I shows

the performance of the clustering using a threshold value of

0.85. The total number of clusters corresponds to the number

of distinct activities recognized by the method. Singleton

clusters are clusters that contain only one action model —

such clusters usually reflect short periods of high motion

indicative of transitions between different actions.

Each sequence was manually segmented into safe driving

periods and unsafe driving periods. Since the goal of the

clustering method is to group activities for further analysis,

it must not group together activities from the two different

classes. The proportion of incorrectly merged frames is

indicated in the last column of table I.

Subject Frames Clusters (Singletons) Confusion

1 10231 33 (24) 4.54%
2 10110 38 (23) 16.8%
3 10380 16 (8) 11.1%

TABLE I

UNSUPERVISED METHOD RESULTS

The majority of the incorrectly clustered action models

represent failures of the skin-color segmentation. For sub-

ject 1, the forearm was not segmented properly on several

occasions. Subject 2 has no experience driving and was

constantly in motion during the whole sequence. The head

pose for subject 2 varied significantly during both safe

driving and unsafe driving periods, which contributes to

the higher confusion. Finally, subject 3’s results suffer from

under-segmentation, but improve significantly if the similar-

ity threshold is increased. We suspect that this is due to the

fact that subject 3’s skin-color masks had fewer skin pixels

as compared to the other subjects, primarily due to skin

segmentation failures. Our future work on the unsupervised

method will concentrate on making the similarity threshold

relative rather than absolute and on improving the skin-color

segmentation further.

C. Activity Classification

The supervised Bayesian eigen-image method was tested

on the same subjects and sequences as the unsupervised

method. Training images were free of noise in segmentation,

and irrelevant parts of the scene were masked out. The

test sets were used as is. Some of the training images had

the leg portions masked out for improving the accuracy of

the training. Training images were excluded from the test

sequences. The number of training images was 20 for the

safe driving, and 40 for the unsafe driving classes. A total

of 963 test images were used.

The system correctly classified 95.84% of the safe driving

activity, and 73.91% of the unsafe driving activity frames.

1.6% of samples in the safe driving activity class were

misclassified as unsafe activity and 14.35% of samples in the

unsafe activity were misclassified as a safe driving activity.

11.74% of samples in unsafe activity were detected in both

classes, as were 3.16% of the samples in the drive activity.

The main causes of misclassification were:

• Noise in the segmentation of the test frames.

• Ambiguous posture of the subjects in either class.

(a) Bad skin-tone segmentation (b) Pose ambiguity due to self-
occlusion

Fig. 8. Bad segmentation and self-occlusions can affect the accuracy of
classification.
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Noise in segmentation of the skin portions of drivers resulted

mostly from extreme saturation of the color image due to

very bright illumination and in some cases, the coloration

of the driver’s clothing. An example of a poorly segmented

image is shown in Fig. 8 where the subject’s hands were

under-segmented resulting in poor classification. Another

source of misclassification was the result of ambiguous

posture of the driver. For example, a driver leaning too close

to the window was misclassified. Another case was when

only one of the hands was visible due to self occlusion. In

this case, the safe driving activity was confused with the

unsafe activity where only one hand is in contact with the

steering wheel. An example is shown in Fig. 8 where the

system detected the driver to be in either safe or unsafe

driving states.

While the supervised learning method obtains high clas-

sification accuracy, its main drawback is that it is unsuitable

for real-time driver activity classification. The supervised

learning method was trained using two distinct classes and

across different subjects to account for the variability in the

appearance of the hands and arms with subjects. However,

training for only two classes limits the performance of the

system when applied to detect activities such as adjusting

the dashboard radio controls.

In this work, our main focus was in distinguishing safe

versus unsafe driving activities in general. One extension

would be to detect different subsets under each class of

activities, in particular the unsafe driving class. Instead of

using only one camera and the appearance cue, we would

like to extend this work to using multiple cues obtained from

multiple cameras, such as eye gaze and head motion.

Although the two learning methods are employed sep-

arately, one extension would be to use the two methods

together. In other words, the supervised learning method

can be used to classify the clusters generated my the un-

supervised method. This would allow the system to collect

information about a driver’s activities in an online fashion,

since individual clusters are produced or updated only when

a change in behavior is detected.

VI. CONCLUSIONS

We have presented two different methods for monitoring

driving activities under challenging imaging conditions. The

results obtained validate the advantages of using driver

appearance obtained from skin-color segmentation for clas-

sification and clustering purposes. Specific advantages of

this approach are the increased robustness to illumination

variations and elimination of the need for tracking and pose

determination.
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