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ABSTRACT

Robust motion recovery in tracking multiple targets using image
features is affected by difficulties in obtaining good correspondences
over long sequences. Difficulties are introduced by occlusions, scale
changes, as well as disappearance of features with the rotation of
targets. In this work, we describe an adaptive geometric template-
based method for robust motion recovery from features. A geometric
template consists of nodes containing salient features (e.g., corner
features). The spatial configuration of the features is modeled using a
spanning tree. This paper makes the following two contributions: (i) an
adaptive geometric template to model the varying number of features
on a target, and (ii) an iterative data association method for the
features based on the uncertainties in the estimated template structure
in conjunction with its individual features. We present experimental
results for tracking multiple targets over long outdoor image sequences
with multiple persistent occlusions. A comparison of the results of the
data association method with a standard Mahalanobis distance gating
applied to individual features is also presented.
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I. INTRODUCTION

Image features provide a robust and simple way to recover

target motion. However, point feature tracking methods gen-

erally suffer from poor feature correspondences owing to: (i)

the similarity of the intensity information shared by features,

(ii) the presence of clutter especially in uncontrolled, outdoor

scenes, and (iii) the noise in the feature templates introduced

from the image in general. This paper tries to address the

following problem: Given a dynamic set of features on a target,

can we obtain a robust data association for each feature using

the information from other features on the target? Specifically,

we try to address this problem by using an adaptive geometric

template that models the spatial relation of features with respect

to each other as a constraint for the measurements.

This paper makes two contributions: (i) an adaptive geometric

template for representing rigid targets, and (ii) a robust so-

lution for the data association problem for features using the

constraints from the geometric template. Common methods for

outlier detection for point features can be classified into one of

the following two types based on (i) the motion of each feature

independently of other features as in [1], [9], [14], and (ii) the

relative configuration of features represented using a model,

such as an affine motion model or the fundamental matrix.

Examples of the latter include the research in [2], [6], [11],

[12]. Reliable computation of the fundamental matrix requires

a large number of features thereby, requiring computationally

expensive matrix factorization in addition to making restrictive

assumptions on tracking. Our method differs from all these

methods in that we use the local configuration of features

derived from a geometric template as shown in Fig. I. The

dynamic template is flexible to addition or deletion of features,

requiring no bootstrapping or large factorization. While superfi-

cially resembling adaptive mesh-based geometric models [10],

no physical models are used. Instead, the link constraints are

enforced based on the uncertainty in the estimation of an

appearance model using a variable dimension Kalman filter.

Data association for the features is obtained by minimizing

the deformation of the estimated geometric appearance. The

Fig. I. A geometric template imposed on a target. The template
consists of a spanning tree connecting the individual features on the
target.

advantage of using an adaptive template for appearance is

twofold. First, no prior knowledge of the target appearance is

necessary, thereby, allowing it to be applied to the tracking of

any generic rigid object. Second, this method provides a natural

way to eliminate bad features by removing features moving

differently from the remaining features on the model.

This paper is arranged as follows: Relevant prior work is

discussed in Section II. Section III presents the data association

method, Section IV discusses the adaptive geometric template

model. Details of the feature tracking method are discussed

in Section V. Finally, experimental results are presented in

Section VI and Section VII concludes the paper.
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II. PREVIOUS WORK

Most of the work on outlier detection for point image features

consists of using a model describing the transformation of

features in the image. Examples include, outlier detection using

orthogonal regression by Torr and Murray [12], random sample

consensus methods introduced by Fischler and Bolles [2], the

X-84 criterion used by Tommasini et al. [11], as well as,

subspace matching methods [6]. Harris [4] introduced rigid

body constraints for outlier detection. Recently, Guo et al. [3]

proposed an interesting linear combination representation-based

approach for detecting feature outliers for affine motion images.

A Support Vector Machine (SVM) regression method was used

by Zhu et al. [16] for detecting outliers based on iterative

pruning.

Adaptive meshes and geometric representation models such

as [5], [7], [10], [15] are some examples of geometry-based

methods for object recognition and tracking. However, the

similarity of the proposed method with these methods ends

with the use of local similarity of features to form the ge-

ometric appearance template. The nodes are variable, and

the deformation of the links is guided by the uncertainty in

the estimated appearance, in contrast to physics-based models

which typically make use of a spring force system to guide

the link deformations. The structure is inferred automatically

without any need for bootstrapping with a template.

III. GEOMETRIC TEMPLATE-BASED DATA ASSOCIATION

Under the assumption that the tracked targets are rigid, the

deformations in the geometric template will be restricted to

slight changes in the spatial relations between the features on

the target. Hence, the problem of data association consists of

finding the set of measurements in a given frame that minimizes

the extent of deformation in the template. This is the same as

maximizing the joint likelihood of all the measurements given

the appearance. This can be expressed as,

Λ(a) = p(Z|a) = p(x1, x2, . . . , xn|a) (1)

where Λ(a) is the likelihood of the appearance, and Z =
{x1, x2, . . . , xn} is the set of measurements for N features

on the template, and a is the appearance. Since each feature

measurement is obtained independent of one another, Equation

(1) can be written as,

Λ(a) =
N∑

i=1

N∑
j=1,j �=i

p(xi|a)p(xj |a) (2)

aML = argmaxΛ(a). (3)

Thus, the maximum likelihood solution is obtained by the

maximum of the appearance likelihood for all the feature

measurements. The likelihood of a feature measurement is

computed based on the appearance and the estimate of the

feature motion as,

p(xi, x̂i|a) = p(xi|x̂i)p(x̂i|a) (4)

= N(xi; x̂i, Σi)N(x̂i; a,Σa)

where xi is the measurement for a given feature i, x̂i and Σi

are the estimated position and covariance associated with the

feature i, respectively. Σa is the estimated covariance in the

appearance a.

N(x̂i; a,Σa) =
1
c1

e−
PK

j=1(lij−l̂ij)Σ−1
ij

(lij−l̂ij)
′

2 , (5)

lij = x̂i − x̂j

N(xi; x̂i, Σi) =
1
c2

e−
(xi−x̂i)Σ

−1
i

(xi−x̂i)
′

2 (6)

where c1 and c2 are the normalization constants. K corresponds

to the number of links connected to a given feature in the

template, l̂ij is the predicted link length, with covariance

Σij , and lij is the link length computed from the position

estimates of features i and j. Σi corresponds to the estimated

covariance for the estimated position of feature i. As might

be obvious to most readers, the terms in the exponent of both

the equations, Equations (5) and (6), correspond to computing

the Mahalanobis distance. Hence, the problem can be reduced

to computing the set of measurements that minimizes the total

deviation computed in the form of Mahalanobis distances. This

can be summarized as,

ND = min(
N∑

i=1

ri
f + ri

l) (7)

ri
f = [xi − x̂i−1]Σ−1

i−1[xi − x̂i−1]
′

ri
l =

k∑
j=1

[lij − l̂ij ]Σ−1
ij [lij − l̂ij ]

′

where ri
f and ri

l are the residuals on node ni based on the

estimates of the node (or feature) motion x̂i−1, covariance

Σi−1 from frame i − 1, and the predicted estimates of links

l̂ij , and covariance Σij . For any node, ni, the total node

residual when excluding the true measurement is obtained by

replacing the estimated feature position in frame i with an

estimate of the predicted position in the same frame. Hence,

a true measurement will be discarded as an outlier when the

residual resulting from its inclusion is more than the residual

resulting from excluding the measurement. The algorithm for

data association is described in Table I. As shown, each node is

tested with two different hypotheses: (a) estimated position at

time t resulting from inclusion of measurement for a feature i
at time t, and (b) predicted position resulting from the Kalman

filter’s propagation step at time t.

IV. GEOMETRIC TEMPLATE ADAPTATION

The geometric template consists of a tree structure whose

nodes are comprised of the point features on the target and

the links connecting the features. A minimum spanning tree is

used to connect the features on a target. Hence, for a target

consisting of N features, the template consists of N nodes

with N − 1 links.

The geometric template deforms with target motion owing to
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Set Hypothesis of all features to estimated
compute total node residual NDmin

STEP I:
for each feature i <- 1 to N

Hypothesis(i) <- alternate(Hypothesis(i))
compute total node residual Ndnew
if(Ndnew < Ndmin)

Ndmin <- Ndnew
alteredFeature <- i

else
Hypothesis(i) <- alternate(Hypothesis(i))

end
push(Stack, alteredFeature)
push(alteredList, alteredFeature)

STEP II:
while(Stack is not empty)

alteredFeature <- pop(Stack)
for each feature (j <- 1 to m

connected to alteredFeature
& feature j is not in alteredList)
Hypothesis(j) <- alternate(Hypothesis(j))
compute node residual Ndnew
if(Ndnew < Ndmin)

Ndmin <- Ndnew
push(Stack, j)
push(alteredList,j)

else
Hypothesis(j) <- alternate(Hypothesis(j))

end
alteredFeature <- pop(Stack)

end

TABLE I

ALGORITHM FOR COMPUTING DATA ASSOCIATION FOR FEATURES.

ALTERNATE HYPOTHESIS FOR A NODE IS PREDICTED IF THE

ORIGINAL HYPOTHESIS FOR THE NODE i IS ESTIMATED AND

VICE-VERSA.

feature translation. The structure is altered by (i) new features

added to the target, (ii) removal of untracked features, or when

(iii) the template contains features that do not truly belong

to the target. The last case results from the initialization of

features that were truly outside the target, but were detected

as part of the target owing to errors in the blob segmentation.

The template is modified in each of the above cases either by:

(i) addition or removal of links, or (ii) by replacing parts or

the whole template with a new template.

In the case of (i), the template update consists of the addition

Fig. II. Feature addition. The new feature, indicated by light circle,
is added to the closest node in the template.

of new links. A new feature is added to a node closest to the

feature as shown in Fig. II. In the case of (ii), the template

is updated by removing the links connected to the removed

feature. In order to maintain the tree structure, the appearance

is adapted by reconnecting the appropriate features. Fig. III

illustrates examples for the removal of an internal node

indicated by the shaded circle, and an external node (clear

node). In this case, nodes are reconnected to preserve a tree

structure without constructing a new minimum spanning tree

so that the learned appearance model is not discarded. In

the case of (iii), the features that do not truly belong to the

target are identified as those that consistently lie outside the

target’s blob boundary, and are removed from the appearance

model. As mentioned in the previous paragraph, in any of

Fig. III. Feature removal. The features to be removed are indicated
by lightly shaded and clear circles. As shown, removal can be simply
performed by deleting the node and its associated link for a external
node like the clear circle, while removal of an internal node such as
the lightly shaded circle, requires addition of new links among the
remaining features.

case (i), (ii), and (iii) only part of the template is modified

leaving the rest intact (other than the case when the tree is

completely reinitialized with a new template). Hence, the

estimates for the parts of the template containing the old links

are preserved while new links are initialized in the Kalman

filter, using the covariance Σij =
√

ΣiΣj , where Σi and Σj

are the covariances in the position of the features i and j. The

subscripts for x and y coordinates are omitted for clarity.

The geometric template is estimated using a variable state

dimension Kalman filter. The state of the filter consists of the

spatial distances between the features forming the links in the

template. Since, only portions of the filter state corresponding

to the newly added or removed links in the template are

altered, the filter is merely augmented or diminished rather

than initializing a new filter on every appearance update.

A zeroth order motion model is used to model the spatial

constraint of features. The filter state and transition matrices

are expressed as,

X =

⎡
⎢⎢⎢⎣

L1

L2

...

LN−1

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ ,

H =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 . . . 1
0 1 . . . −1 0
1 . . . −1 0 0
...

...
. . .

...
...

0 0 . . . 1 −1

⎤
⎥⎥⎥⎥⎥⎦

where X corresponds to the state of the filter and L1, . . . , LN−1

are the link lengths or spatial distance between features, A is
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the state transition matrix, and H is the observation transition

matrix. Note that the dimensionality of H is N × N since it

transforms the individual feature positions to the links. The

measurement error for the links is expressed as a product of

the error covariances of the features forming the link.

V. FEATURE INITIALIZATION AND TRACKING

An adaptive background segmentation method as in [13] is

used to automatically detect and track the targets of interest

in the scene. Target tracking consists of using both the blob’s

position measurement and the features’ velocity measurement.

Using the blob region as the region of interest, features are

initialized using the standard Harris’ corner operators. As the

target moves in the scene, newly detected features replace those

lost due to rotations, scale changes, and occlusions. The Sum-

of-Squared Differences metric as proposed in [8] is used to

eliminate any bad or unreliable features. The feature dynamics

are modeled as a first-order motion model using a linear

Kalman filter, while the target dynamics are also modeled by a

first-order motion model albeit with an extended Kalman filter.

Feature correspondences between consecutive frames is ob-

Fig. IV. Tracking error for feature tracking using the Mahalanobis
distance, and feature tracking using the geometric template.

tained through Sum-of-Squared Differences (SSD) matching.

The measurements obtained from the set of features are then

checked for validity using the geometric template-based data

association as discussed in Section III.

VI. RESULTS AND DISCUSSIONS

A. Experimental Setup

The objective of the experiments was to test the efficacy

of using the geometric template-based data association for

obtaining robust tracking. All experiments were performed on

fairly crowded outdoor image sequences. In order to evaluate

the performance of the proposed data association scheme,

standard Mahalanobis distance gating-based data association

applied to each feature individually was used as a benchmark.

The input to the target tracker consists of the velocity measure-

ments obtained from the features and position measurements

obtained from standard motion segmented blobs. However, the

measurements from features were weighted higher compared

to the position measurements to reduce the influence of the

position measurements on tracking.

Fig. IV and Fig. V show the tracking errors for two different

Fig. V. Tracking errors for feature tracking using the Mahalanobis
distance and feature tracking using the geometric template. The
increase in error for the Mahalanobis distance constrained feature
tracker after frame 40 is the result of tracker switching during an
occlusion.

targets for the following two cases: (a) feature measurements

constrained using Mahalanobis distance-based gating applied to

individual features, and (b) feature measurements constrained

using the geometric template. The plots show the trace of the

error covariance in the estimated target state (position and

velocity in the scene coordinates) with time. As shown in

Fig. IV, the error covariance for the case where the feature

measurements are constrained using the geometric template

produces the lowest errors even during occlusions. Occlusions

occurred during the frames (65 to 110). Similarly, in Fig. V,

the increase in the error covariance after frame 40 for the

Mahalanobis distance-gated features is the result of tracker

switching to another target, whereas, the geometric appearance

constrained tracker produces consistent results without losing

the target.

Fig. VI and Fig. VII show examples of tracking in two dif-

ferent outdoor sequences using geometric template constrained

tracking.

B. Discussion of Results

As indicated by the results, geometric template constrained

tracking helps attain a consistent tracking as well as minimizes

the covariance of the estimated trajectory in comparison to the

Mahalanobis distance constrained tracking. In comparison to
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(a) Frame 246 (b) Frame 321

Fig. VI. Outdoor tracking sequence I.

(a) Frame 1300 (b) Frame 1464

Fig. VII. Outdoor tracking sequence II.

methods such as [6], [11], [12] that compute a fundamental

matrix through optimization, the proposed method does not

require a lot of features to obtain a robust appearance estimate.

The accuracy of the model and data association improves with

consistent tracking of the features over time. Further, no prior

knowledge of the template is required. Thus, in comparison to

adaptive mesh-based methods, no explicit physical models are

required. Robust data association can be obtained as long as

stable features on the target can be attained. Clearly, a more

stable appearance model containing a large number of features

would provide a much better estimate for feature measurements.

Note that the data association using this method reduces to

data association utilizing the standard Mahalanobis distance

constraint for individual features on a template having a large

uncertainty.

VII. CONCLUSIONS

This paper presented an adaptive geometric template for

modeling the appearance of targets. The adaptive templates are

automatically initialized from the image features detected using

the motion blobs representing the target as region of interest.

This paper showed how the geometric template can be used

as an additional constraint for obtaining good data associations

for image features on the targets for a multiple target tracking

application. We also showed that using the geometric template-

based constraint helps obtain a more robust tracking solution

in applications where a standard data association such as a

Mahalanobis distance-based method applied to each feature

individually fails.
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