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ABSTRACT

Accurate tracking is a difficult task in most computer vision ap-
plications. Errors in target localization and tracking result not only
from the general uncontrolled nature of the environment, but also
from inaccurate modeling of the target motion. This work presents
a novel solution for the robust estimation of target trajectories
obtained from real-world scenes such as traffic intersections. The
main contribution of this work is a deterministic sampling approach
applied to the filtering step of the switching Kalman filter/smoother.
The unscented transform is used to obtain a fixed set of samples of
the state distribution in the filtering step. Results demonstrating the
improved accuracy and robustness of the proposed method, namely,
deterministic sampling or unscented transform-based switching
Kalman filter (DS-SKS or UKS) and the standard switching Kalman
filter/smoother (SKS) are presented.
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I. INTRODUCTION

Robust tracking in general outdoor scenes is an important
problem in several Intelligent Transportation Systems (ITS)
applications. Besides the complex nature of the scene due to
sources such as clutter and sudden illumination changes, in-
appropriate models used for the target motion also contribute
to inaccurate estimation. Assumed density filtering methods
such as [1], [4] address the problem by using a small number
of models to approximate the target motion. However, when
applied to the estimation of non-linear models, the lineariza-
tion and hypothesis pruning approximations result in poor
tracking. For example, Fig. 1 shows an example of a lane
changing vehicle and the estimation of a segment of its trajec-
tory using a standard switching Kalman filter/smoother (SKS)
in Fig. 2. As can be seen, while the straight moving portions
of the target are estimated with good accuracy, the lane
change is not. Such an approximation may not be acceptable
particularly for an application such as data collection, traffic
flow prediction or scene monitoring applications. The effect
of errors and the inaccuracies in the premature hypothesis
pruning in switching Kalman filters has been previously
noted by [2] who used a mixture of Gaussian distributions
to obtain robust performance from the switching Kalman
filter. However, it is unclear how the samples are generated.
Applying particle filtering based sampling methods will only

Fig. 1. An example of a lane changing sequence obtained from a video
sequence.

make the tracking computationally intractable particularly
when the number of targets is large. This work combines
the unscented transform based sampling in the switching
Kalman filter to address the problem of inaccurate estimation.
The main contribution of this work is a computationally
tractable, yet robust tracking solution for multiple target
tracking in outdoor traffic intersections using a determin-
istic sampling-based switching Kalman filter (DS-SKF) or
unscented transform-based switching Kalman filter/smoother
(UKS). Fig. 2 shows the comparison of trajectory estimation
using the proposed DS-SKS also referred as UKS in the paper
and the standard switching Kalman filter/smoother (SKS).

II. PROBLEM STATEMENT

A. Linearization Approximation

The standard method for estimating non-linear systems
using the Kalman filter framework is the extended Kalman
filter, where the system is locally approximated as a linear
dynamic system. Thus, the extended Kalman filter makes
use of the gradient of the first two moments, namely, the
predicted mean and the covariance for function estimation.
While this approximation works as long as the dynamics of
the system are more or less smooth, inaccuracies arise in the
presence of discontinuous or changing motions. The inaccu-
racy of the extended Kalman filter based approximation is
discussed in [9].

B. Moment Matching Approximation

In a switching Kalman filter, the standard approach to
make inference computationally tractable is through collaps-
ing the belief states such that the number of belief states m

in each step remains the same. This approximation however,
affects the quality of the estimation particularly when applied
to non-linear systems as well as the accuracy of smoothing.
The state posterior x̂t as a result of smoothing can be
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(a) Tracking with Extended switching
Kalman filter/smoother.

(b) Tracking with Deterministic parti-
cle switching Kalman filter/smoother.

Fig. 2. Comparison of tracking with extended switching Kalman filter/smoother (SKS) and the deterministic particle switching Kalman
filter/smoother (DS-SKS or UKS). As shown, the lane change is more accurately captured by the proposed method in comparison to the
standard extended switching Kalman filter/smoother. The ground truth measurements are indicated by the solid line while the ’+’ sign
corresponds to the observed measurements. The results of the estimator are indicated by ’x-’. The ellipses along the trajectory correspond
to the estimate of the uncertainty in the position estimate.

represented as,

p(x̂t, st|y1:T ) ∝
∑
si

∫
xi

p(xt|xi, si, st, y1:t)p(xi, si, st, y1:T )

(1)
where s is the set of hidden switch variables, i = t + 1, and
y1:T is the set of observations. The first term can be obtained
from the forward step of the switching Kalman filter. The
second term can be expanded, substituting i by t + 1 as,

p(xt+1, st+1, st, y1:T ) = p(xt+1|st, st+1, yt:T )p(st|st+1, y1:T )
(2)

The last term p(st|st+1, y1:T ) is obtained through Bayes’ rule
as,

p(st|st+1, y1:T ) = p(st|st+1, y1:t)p(yt+1:T )

=
p(st|y1:t)p(st+1|st)∑M

j=1 p(sj
t |y1:t)p(st+1|s

j
t )

. (3)

This approximation, based on the Markov assumption that all
the information for a state xt, st is contained in a previous
state xt−1, st−1 is true only in the forward step and not
necessarily for the backward or smoothing step. As such,
the marginalization in Eqn. (3) is good only when p(sj

t |y1:t)
correctly represents the entire distribution of xt. Given that
it is obtained from a collapsed mean of a Gaussian mixture,
this approximation does not necessarily hold true, more so in
the case of linearization approximation used for a non-linear
system by the extended Kalman filter.

Hence, in order to deal with the above two mentioned
problems, the posterior state and covariance are represented
as a set of sampled points. Specifically, the collapsed state
density of the switching Kalman filter is replaced by a set
of samples obtained using the unscented transform, followed
by the application of the standard switching smoother.

III. RELATED WORK

Non-linear systems are estimated using the Kalman filter
as locally linear systems. Common approaches for doing this
approximation include, first- and second-order truncated Tay-
lor series expansions such as the extended Kalman filters, the
unscented Kalman filtering [9], [13], and Gaussian quadrature
approximations such as [7]. Expectation propagation based
methods [10] help address the problem of approximation due
to moment matching in assumed density filters. The main
limitation of this approach is that convergence is dependent
on the starting solution. Barber [2] proposed several ap-
proaches including expectation propagation-based smoothing
and mixture representation for improving the estimates of
switching state space models.

Non-parametric estimators such as the sequential Monte
Carlo or particle filters also address the problem of robust
estimation of arbitrary non-linear functions [8], [5], [12]. The
main disadvantage of particle filters and smoothers is the
high computationally complexity and the poor scalability of
estimation to the number of targets due to sample collapse.
Higher accuracy can be achieved by using deterministic
particle filters such as [3] with minimal computational re-
quirements for low dimensional function estimation.

The proposed method differs from the above discussed meth-
ods in that a small number of samples is used to approximate
the posterior of a mixture density. In this regard, this work
resembles most closely to the mixture of Gaussians used for
approximating the switching state space models as proposed
by Barber [2]. However, since the samples are obtained from
the unscented transform, a much smaller set of samples is
required for the approximation as long as the noise model in
the measurements is reasonably accurate.

A. Problem Domain

The application used in this work is the automatic data
collection at traffic intersections. The input or the target
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trajectories for the data collection are obtained from computer
vision-based tracking. The target trajectory measurements,
consisting of the discrete target position and velocity in the
image at each frame are obtained by combining cues such as
motion segmented blobs and the target color distribution. The
details of the tracking method are in our earlier work [11].
The individual cue measurements, namely position from mo-
tion segmented blobs and color are combined incrementally
in the switching Kalman filter. The deterministic samples
are generated from the state posterior obtained after the
incorporation of the last available measurement in the given
frame.

B. Outline

This paper is organized as follows: Section II presents
the problem and the motivation for the proposed method
while related research is discussed in Section III. Section IV
presents details of the proposed deterministic sampling-based
switching Kalman filter/smoother. The experimental results
and their discussion are in Section V, and Section VI con-
cludes the paper.

C. Notation

All column vectors such as state means are indicated by
lower case letters such as x and matrices are indicated by
upper case letters. A ’−’ in the superscript, x− corresponds
to a predicted estimate while a no sign corresponds to
an updated state estimate. A ’+’ in the superscript, x+

indicates the smoothed estimate. Measurements are indicated
by z and the measurement noise or covariance by R. The
state estimate, namely, the mean and the covariance are
indicated by x and P . The subscript m used with the state
estimates xm, Pm corresponds to the state estimates for a
filter model m. Model transitions are indicated as jsk where
the superscript corresponds to the model transitioned from
and the subscript corresponds to the model transitioned to.
Finally, the sampled distribution is represented as xi where
i corresponds to the ith sample.

IV. PROPOSED METHOD: DETERMINISTIC SWITCHING

KALMAN FILTER

In this work, we address the inaccurate estimation in
an extended switching Kalman filter through deterministic
sampling of the state. The samples are obtained by applying
the unscented transform to the individual model estimates.
The unscented transform consists of computing a set of
deterministic sigma vectors as,

X0 = x̂

Xk = x̂ ± (
√

(N + λ)P̂x)k, k = 1, . . . , 2N. (4)

x̂ and P̂x are the mean and the covariance of the random
variable x. X0, . . . , X2N correspond to the sigma vectors, N

is the number of sigma points or the number of dimensions

St St+1

Xt Xt+1

Yt Yt+1

Xt
i Xi

t+1

Fig. 3. Graphical representation of the deterministic sampling
switching Kalman filter. The shaded nodes are observed and the
clear nodes are hidden. The hidden state xt, xt+1 consists of mixture
of Gaussians for each filter model which are represented as a
deterministic sample obtained from the unscented transform.

of the state, and λ is a constant scaling parameter computed
as, λ = α2(N + κ) − N . α is a constant that determines
the spread of the sigma points and κ is usually set to 0. The
values of the scaling parameters are chosen assuming that the
distribution is Gaussian as provided in the original paper [9].

A Graphical model of the filter is depicted in Fig. 3. As
shown, the hidden variable or the state is represented as a
mixture of Gaussians obtained from an unscented transform
instead of the collapsed mean. To further improve the results
of estimation, a standard Kalman smoother is applied in
the backward step. Details of the forward and the backward
algorithm are discussed in the following paragraphs.

Forward Algorithm: Deterministic Sampling-based
Switching Kalman Filter The forward algorithm is depicted
in Fig. 4. In the forward or the filtering step, the individual
state densities of the mixture models are approximated using
a set of deterministic sigma points obtained through the
unscented transform Eqns. (4). Each one of these samples is
then propagated through all the filter models as in a standard
switching Kalman filter and recombined after the update step.
The aposteriori xt state estimate is computed in two steps.
In the first step, the estimates resulting from the sigma points
for each filter are recombined, followed by collapsing of the
mean of the switching filters to obtain the collapsed mixture
of state densities.

In essence, this representation of each state as a set of sigma
particles resembles a particle filter approximation. However,
the weights are deterministic and new samples are created
from the posterior state estimate in each time step. Thus,
there is no danger of sample degeneration or collapsing.

The filter models used by the individual filters consist of: (i)
zeroth order or constant position, (ii) first order or constant
velocity, and (iii) second order or constant acceleration filter
to model the appropriate motion of vehicles in the scenes.
The other filter parameters such as the system noise covari-
ance and the static mode probabilities for the switching filters
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Fig. 4. Deterministic sampling-based switching Kalman filter. The
steps involved in a single filtering iteration are illustrated. The state
models indicated by m consist of n different models. The state
estimate for each model is sampled using the unscented transform
to produce k sigma points which are then propagated through the
filters as in a standard switching Kalman filter and recombined after
the collapse operation.

are design parameters that are estimated off-line from the
observed data using an Expectation Maximization algorithm.
Interested readers may find details of parameter estimation
for state space models using expectation maximization in [6].

Backward Step: Switching Kalman Smoothing The back-
ward recursion or smoothing consists of applying the stan-
dard switching Kalman smoother. The goal of these recur-
sions is to refine the estimates obtained from the forward
and backward recursion. This can be expressed as,

p(x+
t , s+

t |y1:T ) =
∑
s
+
t+1

∫
x
+
t+1

p(xt, x
+
t+1, s

+
t+1, st, y1:T )

=
∑
s
+
t+1

∫
x
+
t+1

p(xt, st|x
+
t+1, x

+
t+1, y1:t)

p(x+
t+1, s

+
t+1|y1:T ). (5)

The ’+’ signs in the superscript indicate that the variables
are smoothed posterior estimates, that is, p(xt+1|y1:T ). Addi-
tional details on smoothing and the approximations to speed
up smoothing were explained previously in II-B.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The objective of the experiments was to evaluate the
performance of the proposed deterministic sampling-based
switching Kalman filter/smoother for robust estimation. The
standard switching Kalman filter/smoother is used as a bench-
mark to assess the performance of the proposed method.
Experiments were performed using trajectories obtained from
a vision-based tracker using motion segmented blobs and
color for target localization. Details of the tracking method
are described in our previous work [11]. To evaluate the per-
formance of the tracker under difficult conditions, additional

Fig. 5. Root mean square error in trajectory estimation for the DS-
SKS or UKS and standard SKS. The ground truth was obtained
manually from the image sequences.

Fig. 6. Root mean square error in the trajectory estimates for the
DS-SKS or UKS and standard SKS for the trajectory shown in
Fig. 9.

Gaussian noise was injected into the sequences obtained from
the vision-based measurements. 1

B. Results

Fig. 7 shows the result of tracking a trajectory with
lots of discontinuities using both the proposed deterministic
sampling-based switching Kalman filter/smoother (DS-SKS)
or UKS and a standard switching Kalman filter (SKS). As
can be seen, the true trajectory indicated by the solid line is
modeled more accurately using the sampling-based approach
compared to the standard SKS. Fig. 5 shows the root mean
square error in the estimates of a trajectory using both the DS-
SKS and SKS. The corresponding image sequence is shown
in Fig. 8. The ground truth was obtained manually from the
image sequences. Fig. 6 shows the root mean square errors
for a left turning vehicle undergoing occlusions as depicted
in Fig. 9.

1Note that the additional Gaussian noise only makes the data worse than
the actual real-world data in terms of signal to noise ratio.
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(a) Deterministic sampling-based switching Kalman fil-
ter/smoother.

(b) Standard Switching Kalman filter/smoother.

Fig. 7. Example of tracking comparison for the DS-SKS or UKS and standard SKS. Ground truth measurements (raw) are indicated
by the solid line, while the + signs indicate the observed measurements. The results of the estimator are indicated by an −x line. The
ellipses correspond to the uncertainty in the current position estimate.

Fig. 8. Example tracking in an image sequence. The RMS errors using the two tracking methods are depicted in Fig. 5.

Fig. 9. Example tracking of a turning target. The RMS errors using the two tracking methods are depicted in Fig. 6.

C. Discussion of Results

As depicted in the results, even using a small set of
deterministic samples obtained from the unscented transform
helps obtain a much better approximation of the target
trajectories compared to the switching Kalman smoother.
However, one important issue with the robustness of the
unscented switching Kalman smoother is the accuracy of
measurement noise. Large inaccuracies in the measurement
noise such as an underestimate can result in the tracker
incorporating noisy measurements and vice versa for over-
estimates. Because of sampling, and the integration used in
the estimation, the inaccuracies are also projected further.
Another issue resulting from using the unscented transform
is the underestimate of the state covariance as observed
earlier by [9]. Injecting covariances to the state estimates can
improve the results of estimation, but this is still an issue that
needs to be addressed in the future work.

Including trajectory smoothing to improve the accuracy of the
trajectory estimation makes the approach off-line since batch
smoothing requires that the entire sequence of observation be

available. For an application such as data collection, this is
not a concern. However, for other applications which require
the data to be processed on-line, we plan to investigate a
windowed version of smoothing.

VI. CONCLUSIONS

This work presented a solution to robust tracking and
trajectory estimation in general outdoor scenes using a de-
terministic switching Kalman filter. As shown in the paper,
the deterministic sampling helps to obtain a computationally
tractable, albeit robust solution for trajectory estimation of
noisy trajectories obtained from computer vision-based track-
ing.

VII. ACKNOWLEDGMENTS

This work has been supported in part by the National Sci-
ence Foundation through grant #IIS-0219863, the Minnesota
Department of Transportation, and the ITS Institute. The
authors would also like to thank the anonymous reviewers
for their insightful comments.

1344



REFERENCES

[1] Y. Bar-Shalom, X. Rongli, and T. Kirubarajan. Estimation with
applications to tracking and navigation. John-Wiley and Sons, 2001.

[2] D. Barber. A stable switching Kalman smoother. Technical Report
IDIAP-RR 04-89, IDIAP Research Institute, 2004.

[3] E. Bolviken and G. Storvik. Sequential Monte Carlo Methods in
Practise, Deterministic and stochastic particle filters in state space
models. Springer-Verlag, 2001.

[4] R. Chen and J.S. Liu. Mixture Kalman filters. Journal of Royal
Statistical Society Series-B Statistical Methodology, 62 (Part 3):493–
508, 2000.

[5] R. Van der Merwe, J.F.G. de Freitas, A. Doucet, and E.A. Wan. The
unscented particle filter. Advances in Neural Information Processing
Systems, December 2000.

[6] Z. Ghahramani and G.E. Hinton. Parameter estimation for linear
dynamical systems. Technical Report CRG-TR-96-2, University of
Toronto, 1996.

[7] A. Honkela. Approximating nonlinear transformations of probability
distributions for nonlinear independent component analysis. In Proc.
IEEE Intl. Joint Conference on Neural Networks, pages 2169–2174,
2004.

[8] M. Isard and A. Blake. A smoothing filter for CONDENSATION.
Lecture notes in Computer Science, 1406:767–782, Jan 1998.

[9] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear
estimation. In Proceedings of the IEEE, volume 92, March 2004.

[10] T. Minka. Expectation propagation for approximate Bayesian infer-
ence. In Proc. of Uncertainty in Artificial Intelligence, 2001.

[11] H. Veeraraghavan and N. P. Papanikolopoulos. Combining multiple
tracking modalities for vehicle tracking in traffic intersections. In IEEE
Conf. on Robotics and Automation, 2004.

[12] J. Vermaak, A. Doucet, and P. Pérez. Maintaining multi-modality
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