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Abstract

Camera calibration methods, whether implicit or explicit,
are a critical part of most 3D vision systems. These methods
involve estimation of a model for the camera that produced
the visual input, and subsequently to infer the 3D structure
that gave rise to the input. However, in these systems the
error in calibration is typically unknown, or if known, the
effect of calibration error on subsequent processing (e.g. 3d
reconstruction) is not accounted for. In this paper, we pro-
pose a Bayesian camera calibration method that explicitly
computes calibration error, and we show how knowledge
of this error can be used to improve the accuracy of sub-
sequent processing. What distinguishes the work is the ex-
plicit computation of a posterior distribution on unknown
camera parameters, rather than just a best estimate. Mar-
ginalizing (averaging) subsequent estimates by this poste-
rior is shown to reduce reconstruction error over calibra-
tion approaches that rely on a single best estimate. The
method is made practical using sampling techniques, that
require only the evaluation of the calibration error function
and the specification of priors. Samples with their corre-
sponding probability weights can be used to produce better
estimates of the camera parameters. Moreover, these sam-
ples can be directly used to improve estimates that rely on
calibration information, like 3D reconstruction. We eval-
uate our method using simulated data for a structure from
motion problem, in which the same point matches are used
to calibrate the camera, estimate the motion, and recon-
struct the 3D geometry. Our results show improved recon-
struction over non-linear Camera calibration methods like
the Maximum Likelihood estimate. Additionally, this ap-
proach scales much better in the face of increasingly noisy
point matches.

1 Introduction

Camera Calibration and 3D reconstruction are used in a
variety of fields ranging from robotics to entertainment to
visualization. Most of the work in the calibration involves

estimating the camera model from visual input. However,
camera calibration is highly susceptible to noise, because
of which there are numerous linear [6, 9] and non-linear
optimization methods [7, 9, 11, 21, 22, 23] that minimize
least squares error likelihood defined on the point matches.
In all of these linear and non-linear methods, the goal
is a best estimate of the camera parameters. However,
statistically speaking, the “best” answer is still a noisy one
[8, 16]. Because the camera parameter estimates are used
in subsequent steps to obtain the 3D reconstruction, shape
analysis, etc, the error inherent in the camera parameter
estimates contaminates all subsequent estimates.

Our aim in this work is to present an approach to 3D
reconstruction via camera calibration such that the viewing
parameters (i.e. the camera parameters) are discounted. We
do so because one would like to find the most probable 3D
scene that gave rise to the images capturing the scene. We
accomplish this goal by exploring the posterior of the cam-
era parameter space, i.e, P (θ|Data) using Bayesian Analy-
sis with both uniform priors (in the case, where we do not
know anything about the parameters) and gaussian and di-
rectional priors (where we have some knowledge of the pa-
rameters, say from a previous calibration). Rather than pro-
viding a best estimate of the camera parameters, the method
produces a set of samples that can be used in several ways–
to produce expected values of subsequent estimates (e.g. re-
construction), and to quantify the uncertainty in the camera
parameter estimates, etc. Marginalizing over the camera pa-
rameters in this way to obtain the 3D structure allows one to
“discount” the effect of the viewing parameters on the 3D
scene to be estimated, especially when the posterior of the
3D reconstruction and camera parameters, P (θ,X|Data)is
a non-linear manifold [18].

The paper is organized as follows. After a brief discus-
sion of related work, we discuss Bayesian vs. non-Bayesian
approaches to estimation and show that the Bayesian esti-
mation reduces expected prediction error. Next we show
how to specify priors and derive the posterior distribu-
tion for extrinsic camera parameters given a set of point

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05) 

1550-6185/05 $20.00 © 2005 IEEE 



matches, and show how to make the procedure tractable us-
ing a slice sampler. Finally we test the method on a simu-
lated structure from motion reconstruction problem and on
a real data set.

2 Previous Work

Previous work in camera calibration has treated camera cal-
ibration as an explicit or implicit parameter estimation prob-
lem, and the approaches vary according to the assumptions
made about the number of intrinsic vs. extrinsic parameters,
the number of cameras, and the type of data (e.g. 2D point
matches, the presence of 3D points from calibration objects,
known angles/lengths in the scene, and whether autocali-
bration is used – the same data is used for calibration as
reconstruction.) The heart of point match based calibration
revolves around estimating the fundamental matrix, either
linearly [6, 9, 17] or non-linearly [11, 22, 23]. Camera pa-
rameters can then be extracted from the fundamental matrix.
Bundle adjustment methods give simultaneous estimates of
camera and reconstruction parameters [19]. These methods
minimize a cost function on feature prediction error, that is
typically quadratic but robust variants also exist. Interpreted
statistically, bundle adjustment performs maximum likeli-
hood (or maximum a posteriori) inference in a joint cam-
era parameter/3D point state space. The approaches most
similar to ours formulate the calibration problem in explicit
probabilistic terms, but these authors still only use the prob-
ability expressions to derive camera parameter estimates. In
particular [20, 2, 3, 10] use priors on extrinsic parameters to
generate MAP estimates of camera parameters. [18] also
formulates the problem via a Bayesian model, however, he
applies the framework to the problem of estimating the cam-
era parameter model.

3 Theory

We break the theory of our work into several sections. First,
we discuss Bayesian reconstruction in general, and then
show that Bayesian estimates reduce reconstruction error.
Then we show how to compute the required posterior distri-
bution on camera parameters for the case of self-calibration.

3.1 Bayesian Estimation

In the Bayesian approach to estimation, parameters that are
not directly estimated (nuisance parameters) are eliminated
by marginalization. For example, in a maximum a posteriori
estimate of x given data D with nuisance parameters θ:

x̂(D) = arg max
x

p(x|D) = arg max
x

∫
θ

p(x|, θ, D)p(θ|D)dθ

(1)

The importance of this idea is that for most computer vision
problems, the camera parameters are nuisance variables.

This contrasts with nested parameter estimation, where
nuisance variances are estimated as well:

x∗(θ̂, D) = arg max
x,θ

p(x|θ,D)p(θ|D) (2)

Because these maximizations can be performed separately,
this is equivalent to finding the estimate θ̂ and plugging it in
before maximizing x.

The averaging over the posterior performed by Bayesian
estimation reduces the uncertainty of the parameter estimate
[1, 8], and hence reduces the expected prediction error of
the estimate. We derive a specific expression for the amount
of this reduction below for the case of perspective recon-
struction.

The benefits of the Bayesian approach depend on the rel-
ative uncertainties of x and θ. In particular, the advantages
of Bayesian estimation over the “plug-in” approach disap-
pear as the uncertainty in conditional distribution p(x|θ,D)
approaches zero (or is tiny compared to p(θ|D)).

x̂(D) = arg max
x

∫
θ

p(x|θ,D)p(θ|D)dθ (3)

= arg max
x

∫
θ

δ(x − x∗(θ,D))p(θ|D)dθ (4)

= arg max
θ

p(x∗(θ,D), θ|D) (5)

= x∗(θ̂, D) (6)

where p(x∗(θ,D), θ|D) represents the slice through the
joint distribution induced by the integral. An equivalent ar-
gument can be used to show that the benefits disappear as
the uncertainty on θ goes to zero. To summarize, Bayesian
estimation helps whenever the uncertainty on both parame-
ter types is not negligible.

These results would appear to only apply to probabilistic
approaches to camera calibration, which would exclude the
most popular approaches [7, 9, 22, 23]. Although not op-
timal, in most cases it is still possible to improve estimates
by averaging across the posterior of the camera parameters.

x̄∗(D) = Ep(θ|D)

[
x∗(θ̂, D)

]
(7)

This procedure can be shown to reduce the expected pre-
diction error of the estimate. However, it can bias the es-
timate if p(θ|D) is multimodal, and the modes produce in-
compatible values of x∗(θ̂, D). In this case, averaging can
still be used, but it should be performed separately around
each mode (if possible) using local approximations or mix-
ture distributions.

3.2 Averaging improves Reconstruction

The problem of reconstructing an unknown surface from a
set of point matches under perspective projection can be for-
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mulated as error minimization. For example, using a least
squares error criterion, the reconstructed points minimize
the error function:

εrecon =
Ncam∑
j=1

Npts∑
i=1

|zijuij − Mjpi|2 (8)

where i indexes over data points and j indexes over cam-
eras, uij are the projected points, zij are the unknown
depths, Mj is the homogeneous projection matrix for cam-
era j, and pi is the surface point in world coordinates.
More general loss functions can be used without altering the
essence of the Bayesian approach. Let M denote the full set
of camera parameters required to specify the matrices Mj ,
and let D represent the set of point matches.

Let p̂i(M, D) represent the reconstruction generated by
one of the many plug-in methods available to minimize
equation 8. We are interested in relating the expected
prediction error for plug-in and averaged estimates. Let
p̄i(D) = EM [p̂i(M, D)] denote the plug-in estimate aver-
aged across the posterior distribution on the camera parame-
ters. The expected prediction error for averaged estimates
is given by:

εave = ED

[|p̄i(D) − pi|2
]

(9)

where pi are the true surface point coordinates.
Now the expected prediction error for plug-in estimates

is given by:

εplug = ED

[
EM

[|p̂i(M, D) − pi|2
]]

(10)

A simple argument relates the two:

εplug = ED

[
EM

[|p̂i(M, D) − pi|2
]]

= ED

[
EM

[|(p̂i(M, D) − p̄i(D)) + (p̄i(D) − pi)|2
]]

= ED

[
EM

[|(p̂i(M, D) − p̄i(D))|2]]
−2ED

[
EM

[
(p̄i(D) − pi)T (p̂i(M, D) − p̄i(D))

]]
+ED

[
EM

[|(p̄i(D) − pi)|2
]]

= ED

[
EM

[|(p̂i(M, D) − p̄i(D))|2]] + εave (11)

This shows that the plug-in estimate’s error is the sum
of the average error and an additional term that can be in-
terpreted as the variation in the estimate produced by the
uncertainty in the camera parameters. This also means that
the plug-in estimate’s variance should always be higher than
the averaged variance.

3.3 Camera Model and Calibration method

In this paper we restrict our attention to the case in which
the same image data is used to estimate the camera parame-
ters as perform the reconstruction. We assume that the scene

is viewed by multiple pinhole cameras with known internal
parameters but unknown relative positions and orientations.

A pinhole camera model relates homogenous 3D world
points pi = [xi, yi, zi, 1] to their image projections ui =
[ui, vi, 1]:

ui =
Mpi

mT
3 pi

and
M = K[R t]

where mT
3 is the third row of M. The extrinsic parameters

[Rt] are the rotation and translation respectively that relate
the world coordinate frame to a camera’s coordinate frame
and K denotes the camera’s internal parameter matrix

K =


 α γ u0

0 β v0

0 0 1




that encodes the origin u0, v0, the image axes scale factors
α, β and the skewness of the u, v axes in γ. The world co-
ordinate frame is taken to be one of the camera’s coordinate
frames, so that the extrinsic parameters can be considered
as the transformation between camera frames.

Camera parameter estimation for this case can be con-
sidered a self-calibration problem. In self-calibration, the
data that is used to determine the extrinsic and intrinsic pa-
rameters are point matches between images of the same
scene taken by different cameras. Calibration up to an
overall scale factor can be accomplished using as few a 8
point matches in two images [6, 11]. However, these point
matches are almost always noisy, due to a number of rea-
sons - resolution, ambiguity, lighting, etc, resulting in er-
rors in the camera parameter estimates. Below we explic-
itly model this error by formulating a posterior distribution
on the camera parameters given the set of point matches.
This requires that the joint probability distribution of point
matches, object points to be reconstructed, and camera pa-
rameters P ({uij}, θ, {pij}) be made explicit, which we do
in the next section.

3.4 Bayesian Camera Parameter Analysis

Bayesian Analysis requires the specification of several
probability distributions: likelihood, priors, posterior and
the normalization factor. To put it simply, we have
Posterior = Likelihood∗Prior

NormalizationFactor . In our case, this trans-
lates to

P (X, θ|D) =
P (D|θ,X)P (θ)P (X)

P (D)
(12)

where D = {uij}, θ contains the rotation and translation
parameters and X = {pij}. We ignore the normalization
factor, P (D), as it is a fixed constant for this problem. In
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addition, we ignore the prior on X for simplicity. Below, we
provide expressions for each term in our Bayesian Analysis
of Camera Calibration.

1. Priors
This is where we incorporate any previous knowledge
we have about the camera’s rotation R, and trans-
lation, t. To be specific, we characterize the set of
extrinsic parameters with five variables. We denote
this vector as θ. The first three components of θ form a
vector θR that parametrizes the rotation. The direction
of the vector gives the rotation axis and the angle is
given by the vector’s magnitude. The rotation matrix
R can be obtained from this representation using
Rodriguez’ Formula [4]. The next two components of
θ, θt parameterize the direction of t. Given the scale
ambiguity, we do not need to specify the magnitude of
t. No information about R and t can be modelled as a
uniform prior on θ, in which case the posterior is equal
to the likelihood. Otherwise, we model the prior on θ
as a 3D Gaussian distribution for rotation parameters
(which is only evaluated within a shell of radius π),
and as a vonMises-Fisher distribution (the analog
of the Gaussian distribution for a sphere) for the
direction of the translation [12]. The probability of θR

is given by the formula for a multivariate 3D Gaussian:

P (θR) =

1
(2π)

3
2 |CR|)

exp

[
−1

2
(θR − µR)T C−1

R (θR − µR)
]

(13)

where µR and CR are the mean and covariances re-
spectively.

The translation is defined by a translation direction
given by two spherical coordinates (since the over-
all solution is defined up to a scale factor, the use of
spherical coordinates on a unit sphere is justified). Let
θT = [γ, φ]. The probability of θT is given by the
vonMises-Fisher expression:

P (θT ) =
κ

2 sinh κ
eκ(cos γ cos α+sin γ∗sin α cos(φ−β)) sin γ

(14)

where α and β are the mean spherical angles and κ is
the concentration parameter.

2. Likelihood: We assume that the error in the point
matches is Gaussian in nature, and that point match
errors are independent of each other. This assumption
is quite common in the camera calibration literature
[23, 18]. Because of these assumptions, we can
formulate the Likelihood as the following:

P (D|θ,X) =(
1

2π
√|C|

)n

exp

[
−1

2
Σn

i=1Σ
J
j=1e

T
ijC

−1eij

]
(15)

where n is the number of points, j indexes the cameras,
C is the overall covariance matrix of the match error,
and eij = uij− Mjpi

mj
T
3 pi

is the error in the point matches

given that Mj is the projection matrix for camera j and
mj

T
3 is the third row of Mj.

3. Posterior
The posterior distribution is now defined as

P (X, θ|D) = P (D|θ,X)P (θ) (16)

As explained before, we don’t include the normaliza-
tion factor or P (X). However, P (X) will be used in
our extension to this work, where we have priors on
the 3D structure to be estimated. Our current work
uses this Posterior distribution to average across θ to
reduce average reconstruction error on X.

3.5 Computing solutions

An initial parameter solution is obtained by the Fundamen-
tal 8-point algorithm [6]. This initial solution is used by
the Slice Sampler to explore the posterior of the extrinsic
parameter space by sampling. To evaluate each sample, we
have to compute the likelihood and the prior. The likelihood
is computed as given by Eq. 15, where the error is defined
by the squared difference between the measured points and
the re-projected points. The re-projected points are com-
puted by the projection matrices defined by the sample and
reconstructed 3D points which can be computed using eige-
nanalysis, given point matches and the projection matrices.
The priors are computed as in Eq.13 and Eq. 14. At the end
of the process, we have samples of the extrinsic parameters
and world points X , along with their corresponding prob-
abilities. We use the probabilities to compute an expected
value for the model and a covariance matrix for the extrinsic
parameters in the following way:

E[θ] =
Nsamples∑

i=1

P (θi|D)θi (17)

CR =
Nsamples∑

i=1

P (θi
R|D)(θi

R−E[θR])(θi
R−E[θR])t (18)

CT =
Nsamples∑

i=1

P (θi
T |D)(θi

T −E[θT ])(θi
T −E[θT ])t (19)
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(t)

(t+1)

(t+2)

(t)

Figure 1: Slice Sampler: The sampler cycles through one-dimensional slices in the parameter space, choosing uniformly in a
particular interval of the slice

where θi
R and θi

T represent a sample Rotation and trans-
lation respectively.

4 Implementation

4.1 Sampling

Since the posterior is difficult to compute analytically,
we can sample from it directly instead. Specifically, we
sample various θ and assign the value of P (θ|D) as the
goodness of that θ. We use a Slice Sampler [15, 13]. Slice
Sampling is a Markov Chain Monte Carlo method. It
can be evaluated as long as (a potentially unnormalized)
P (x) can be obtained for any point x. The sampler cycles
through one-dimensional slices in the parameter space (See
Fig. 1), choosing uniformly in a particular interval of the
slice. At the end of sampling process, we obtain samples of
the parameters (θ) with their corresponding probabilities.
The description of one-dimensional sampling is given as
follows (adapted from [15]):

1. Pick a value, y, uniformly between 0 and p(x0), where
p(x0) denotes the probability of the current point x0.
This is used to define a horizontal slice in the posterior
for points x having the same probability p(x0).

2. Place an interval of random width, w, around x0. This
width is expanded by a stepsize, s, until both ends are
outside the slice. Points picked outside the horizontal
slice are used to shrink the interval.

3. A new point, x1 is picked when a point is found inside
the slice.

We use these samples to reconstruct the 3D points, and then
take the Expected value of all the 3D points to obtain the
average reconstructed set of points, as shown in Fig. 2.

E[p] =
∑

i

f(θi, D)P (θi|D) (20)

where pi = f(θi, D) is the function that reconstructs the
3D world point from the parameters θ and point matches
D. For more information on f , see [5].

While sampling methods are not as efficient as linear
methods, the complexity is O(N M L), where N is the num-
ber of function evaluations per sample, M is the number
of dimensions, and L is the required number of samples.
Thus if posterior evaluation is cheap and N is small, then the
method can be quite efficient. The largest problem for sam-
pling methods is the potential for N to become large due to
random walk behavior. However, there are many methods to
overcome this behavior, including overrelaxation [15] and
exact sampling [13]. In our implementation, an evaluation
of a sample entails the computation of projection matrices,
reprojection of computed 3D points, and computing prior
values.

5 Results

We compared the reconstructed points returned by the Slice
Sampler, i.e. the expected value of a set of 3D points, E[p]
(see Eqn. 20) with the 3D points reconstructed by the so-
lution θ returned by the Maximum Likelihood (ML) esti-
mate using a Levenberg-Markquardt maximization proce-
dure [14, 23] implemented in MATLAB. Our data was a
pair of simulated 512x512 images of a 3D cube, and also a
pair of real images (1704 x 2272), where the ground truth
point matches were selected by hand. The camera, a Mi-
nolta S414, was calibrated using a calibration object. We
discuss both below.
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Posterior Distribution: P X D( , | )

Figure 2: Cubes reconstructed with different θ, each with
probability P (X, θ|D). The distribution shown is an exam-
ple of a 1D slice of the Posterior P (X, θ|D). The Bayesian
approach reconstructs different 3D structures by sampling
the posterior, and finally computed an Expected Value over
all reconstructions.

5.1 Experiments with Simulated Data

For the simulated pair of images of a cube, we generated
100 data sets at three different levels of noise: low noise
(pixel standard deviation/resolution = 0.0062), medium
noise (pixel standard deviation/resolution = 0.138) and high
noise (pixel standard deviation/resolution = 0.0195). We
reconstructed points on the cube for these data sets using
both ML and our method with three levels of priors: high
prior (angular variance = 2.8 degrees), low prior (angular
variance = 25.7 degrees), and no-prior or the uniform prior
where P (θ) is always 1.

The bias in the reconstructed points was calculated as the
mean of the squared distance from the truth.

1
Mreps ∗ Nvertices ∗ 3

∑
Mreps

∑
Nvertices

∑
xyz

(Xbayes−Xtruth)2

(21)
The standard deviation of the reconstructed estimates

was computed as the mean of the individual 3D covariances
of the computed points over all the repetitions. If Xi repre-
sents a 3D point reconstructed in a repetition and X̂i is the
average over all repetitions for that vertex, then the average
Standard deviation per vertex was computed as:

1
Nverts

1
Mreps − 1

Mreps∑
i=1

(Xi − X̂)(Xi − X̂)T (22)

Fig.3 and Fig. 4 show the average 3D bias and average
per vertex standard deviation, respectively for our method
at the three prior levels and the ML estimate.
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Figure 3: Real data reconstruction bias as computed in eqn. 21
vs. pixel variance noise. “ML” estimate refers to Maximum Like-
lihood estimate. “High prior” refers to angular variance of 2.8
degrees, “low prior” refers to angular variance of 25.7 degrees),
and “no prior” is a uniform distribution. The figure shows all three
versions of the Bayesian approach to be accounting for noise better
than the Maximum Likelihood approach.

Not surprisingly, the figures show that prior information
is helpful. But they also show that averaging provides im-
proved prediction regardless of prior, with prediction im-
provement increasing with the amount of feature matching
error, as predicted by equation 11. This is because the Max-
imum Likelihood estimate trusts the noisy data too much,
unlike the Bayesian estimates which average the 3D point
samples. Fig. 4 also shows the linear increase in Bias as
the pixel noise increases. Figure 4 shows the average stan-
dard deviation of a reconstructed point using the ML es-
timate varies more those reconstructed using the Bayesian
estimates. This is due to the fact again that the ML estimate
follows the noisy data closely whereas the Bayesian sample
averaging tend to lean centrally in the posterior distribution
as illustrated in figure 2.

5.2 Experiments with Real Data

Using a calibration object and 18 point matches on a
1704x2272 resolution image, we computed the intrinsic pa-
rameters and the 3D ground truth of the calibration object
shown in Fig. 5b.

We generated 40 data sets at three different lev-
els of point match error: low (pixel standard devia-
tion/resolution = 0.0016 pixels), Medium (pixel standard
deviation/resolution = 0.0036 pixels) and High (pixel stan-
dard deviation/resolution = 0.0112). Although the devia-
tions may seem large, it is somewhat justified considering
the resolution of the image. Moreover, in applications such
as tracking, large deviations are quite common. Since we
know from the previous experiments on the simulated data
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Figure 4: Average per vertex Standard Deviation as computed
in Eqn. 22 vs. Pixel Noise variance. “ML” estimate refers to
the Maximum Likelihood estimate. “High prior” refers to angular
variance of 2.8 degrees, “Low prior” refers to angular variance
= 25.7 degrees), and “No prior” is a uniform distribution. Plug-
in estimates should theoretically have a higher variance than the
Bayesian approach.

Figure 5: Real data images 1704x2272 used in the experi-
ments

that the prior information is helpful, we decided to only
compare the uniform Bayes model with the Maximum Like-
lihood approach as a fair test on real data. The results are
shown in fig.6.

6 Discussion

Bayesian methods offer distinct advantages over traditional
estimation solutions. For calibration, the most important
advantages are less sensitivity to data errors and the ability
to learn prior distributions on parameters from past recon-
structions. The results show the Bayesian approach is bet-
ter able to cope with increasing point-match error than the
Maximum Likelihood approach. In the case where an un-
calibrated camera is used for multiple reconstructions, the
posterior distributions from earlier reconstructions can be
used as the prior for the current reconstruction. This is es-
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Figure 6: Reconstruction Bias as computed in Eqn. 21 vs. Pixel
Standard Deviation/Resolution noise. “ML” estimate refers to
Maximum Likelihood estimate. “Uniform Bayes” refers to the
Bayesian reconstruction performed with no prior information on
the extrinsic camera parameters. The Bayesian method scales bet-
ter with noise than the Maximum Likelihood approach. This figure
shows the advantage of the Bayesian model in high noise situa-
tions. It does well because it marginalizes over all the reconstruc-
tions it has performed by sampling the camera parameters. ML
picks the best answer it has encountered so far but doesn’t account
for the fact that there is error in the camera estimate

pecially important for intrinsic parameters that are unlikely
to change between reconstructions. In addition, the current
implementation will be extended to account for P (Xi), so
that we can incorporate a prior for the shape of an object.

7 Conclusion

Inaccurate estimates of intrinsic and extrinsic parameters
during camera calibration introduces error in subsequent
processing. We showed methods that plug-in camera pa-
rameter estimates will underperform Bayesian averaging in
terms of estimate variance. We showed this phenomenon di-
rectly for the case of a Maximum Likelihood estimation in a
structure-from-motion simultaneous camera motion/3D re-
construction problem. Maximum Likelihood methods rely
on the data too much to minimize error, thereby not being
very effective in the case when there is lots of noise. We
approach the problem using Bayesian principles. Having
priors on the extrinsic parameters θ, and a likelihood for
P (D|θ), we are able to sample the Posterior space, P (θ|D)
and evaluate a sample’s (θ) probability. Using these prob-
abilities, we compute an Expected Value of reconstructed
3D world points, E[Xi]. Our results show that this method
does outperform the Maximum Likelihood method, even in
the case, where we do not have a prior, verifying that the
Expected Value is a better predictor.
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