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Abstract—Modeling spatial context (e.g., autocorrelation) is a of attributes of nearby spatial objects tend to systematically affect
key challenge in classification problems that arise in geospatial do- each other. In spatial statistics, an area within statistics devoted
crzrz)arunc?falt\illr?rl('sovatriaangm;;(etl%Sto('i\gni':)eiea g%?]ltj;atl{orr?ggzllg d”:J-SE to the analysis of spatial data, this is caligmhtial autocorrela-
clagsificati%n F;)roblems. The spatia?auto?egression (SAR) model, tion [7]. Knoyvledge_ discovery teChmque.s which ignore spatial
which is an extension of the classical regression model for incorpo- autocorrelation typically perform poorly in the presence of spa-
rating spatial dependence, is popular for prediction and classifica- tial data. Often the spatial dependencies arise due to the inherent
tion of spatial data in regional economics, natural resources, and characteristics of the phenomena under study; but, in particular,
ecological studies. There is little literature comparing these alter- they arise due to the fact that the spatial resolution of imaging
native approaches to facilitate the exchange of ideas (e.g., solutiongansors are finer than the size of the object being observed. For

procedures). We argue that the SAR model makes more restric- . . . .
tive assumptions about the distribution of feature values and class example, remote sensing satellites have resolutions ranging from

boundaries than MRF. The relationship between SAR and MRF is 30 M (€.g., NASA's enhanced thematic mapper of the Landsat 7
analogous to the relationship between regression and Bayesian clas-Satellite) to 1 m (e.g., the IKONOS satellite from Spacelmaging),
sifiers. This paper provides comparisons between the two models while the objects under study (e.g., urban, forest, water) are often

using a probabilistic and an experimental framework. much larger than 30 m. As a result, per-pixel-based classifiers,
Index Terms—Markov random fields (MRF), spatial autoregres-  Which do not take spatial context into account, often produce
sion (SAR), spatial context, spatial data mining. classified images witlsalt and peppenoise. These classifiers

also suffer in terms of classification accuracy.
There are two major approaches for incorporating spatial
dependence into classification/prediction models: 1) spatial
PATIAL databases (e.g., remote sensing imagery, mapsitoregression (SAR) models [2], [15]-[17], [23], [24] and
ensus data) are an important subclass of multimeda Markov random field (MRF) models [5], [6], [9], [13],
databases for several reasons. First, the industry-wide structudgd], [30], [32]. Here, we want to make a note regarding the
query language multimedia standard (SQL/MM) [20] include€rms spatial dependencand spatial context These words
spatial data types along with traditional image, audio, and vid@gginated in two different communities. Natural resource
datatypes. Second, spatial concepts and techniques are oftendpglysts and statisticians useatial dependenceo refer to
cial in the indexing and retrieval of image and video databasé§atial autocorrelationand the image processing community
Finally, according to several estimates, spatial data constitué&§S spatial context to mean the same thing. Wespseial
almost 80% of all digital data including multimedia data. ~ context spatial dependenc@ndspatial autocorrelatiorinter-
Widespread use of spatial databases [28], [29] is leading to@#fngeably to relate to readers of both communities. We also
increasing interest in mining interesting and useful but implicitSe classificationand prediction interchangeably. Natural re-
spatial patterns [10], [14], [19], [26]. Traditional data-mining alSOUrCe scientists, ecologists, and economists have incorporated
gorithms [1] often make assumptions (e.g., independent, idéatial dependence in spatial data analysis by incorporating
tical distributions) which violate Tobler’s first law of geography SPatial autocorrelation into the logistic regression models (SAR
Everything is related to everything else but nearby things a[:godel_s). The SAR model states that the class label ofa_locat|on
more related than distant thing81]. In other words, the values IS pa_lrtlally dependent on the class labels of nearby locations a_md
partially dependent on the feature values. SAR tends to provide
better models than logistic regression in terms of achieving
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tend to be computationally expensive just like the earlier stplant structure and plant resistance to wind and wave action than
chastic relaxation approaches [9] for MRF despite optimizations the plant species.

such as sparse-matrix techniques [23], [24]. Recently, new soan important goal is to build a model for predicting the loca-
lution procedures, (e.g., graph cuts [5]), have been proposedsigh of hird nests in the wetlands. Typically, the model is built
MRF. An understanding of the relationship between MRF anging a portion of the data, called tr@rning dataor training

SAR may facilitate the development of new solution procedurggs “and then tested on the remainder of the data, called the
for SAR. It may also likely lead to cross fertilization of other adtesting dataln this study, we built a model using the 1995 Darr

vances across the two communities. wetland data and then test it on 1995 Stubble wetland data. In the

We compare the SAR and MRF models in this paper usifg, ning data, all of the attributes are used to build the model and

a common probabilistic framework. SAR and MRF use 'der?ﬁ the training data, one valueh&den(in our case, the location

tical models of spatial contexts for spatial locations. Howevedf the nests). Using knowledge gained from the 1995 Darr data

SAR makes more restrictive assumptions about the probab|_lgxd the value of the independent attributes in the test data, we

distributions of feature values as well as the class bounda”\?v%ntto predict the location of the nests in the 1995 Stubble data.

We show that the SAR assumption of the conditional proba- . . ;

- . In this paper, we focus on three independent attributesed-)
bility of a feature value given a class label means that SAR bet- tion durability (Vea)?) dist i ter (DO d
longs to the exponential family of models, (e.g., Gaussian, k%—a ion durability (Veg)2) Istance to open wa er ( W‘).n
nomial). In contrast, MRF models can work with many othe ) water d‘?pth (WQ)The S|gn|f|canqe .Of these th_ree variables
probability distributions. SAR also assumes the linear sepa?’&qs gstgbhghed using clas§|cal statistical analysis [22]. The'spa—
bility of classes in a transformed feature space resulting fro'ilﬁl distribution of thgse variables and t.he gctual nest Iocatlons
a spatial smoothing of feature values based on autocorrelat|ghth€ Darr wetland in 1995 are shown in Fig. 1. These maps il-
parameters. MRF can be used with nonlinear class boundarl#strate the following two important properties inherent in spa-
Readers familiar with classification models which ignore sp4@! data. The value of attributes which are referenced by spa-
tial context may find the following analogy helpful. The relafia! location tend to vary gradually over space. While this may
tionship between SAR and MRF is similar to the relationshipt€Mm 'ObVI'Ol'JS, classical data-mining tgchnlques, either explic-
between logistic regression and Bayesian classifiers. itly or implicitly, assume that the data isdependentlygener-

The rest of the paperis organized as follows. In Section I-A, vi@ed. For example, the maps in Fig. 2 show the spatial distribu-
introduce a motivating example which will be used throughotin of attributes if they were independently generated. Previous
the paper. In Section I-B, we formally define the location predigtudies have evaluated classical data-mining techniques, such
tion problem. Section Il presents a comparison of classical & logistic regression [22], neural networks (NNs) [21], deci-
proaches that do not consider spatial context, namely, logistic #en trees, and classification rules, to build prediction models for
gression and Bayesian classifiers. In Section IlI, we present tiiwd-nesting locations. Logistic regression was used because the
modern approaches that model spatial context, namely, SAR [t&pendent variable is binary (nest/no-nest) and the logistic func-
and MRF. In Section IV, we compare and contrast the SAR atidn “squashes” the real line onto the unit-interval. The valuesin
MRF models in a common probabilistic framework and providihe unit-interval can then be interpreted as probabilities. These
experimental results. Finally, Section V provides conclusiossudies concluded that, with the use of logistic regression, the
and future research directions. nests could be classified at a rate 24% better than random [21].

This paper focuses on a comparison of SAR and MRF. Comn-general, logistic regression and NN models have performed
parisons of other models of spatial context, and evaluation aetter than decision trees and classification rules on this dataset.
translation of new solution procedures for MRF (e.g., grapthe fact that classical data-mining techniques ignore spatial au-
cuts) to new solution procedures for SAR are beyond the scapgorrelation and spatial heterogeneity in the model-building
of this paper. We plan to address these issues in future WOI’kprocess iS one reason Why these techniques do a poor ]Ob A

second, more subtle, but equally important reason is related to
A. An lllustrative Application Domain the choice of the objective function to measure classification

First, we introduce an example which will be used througho@gcuracy. For a two-class problem, the standard way to measure
this paper to illustrate the different concepts in spatial dagssification accuracy is to calculate the percentage of correctly
mining. We are given data about two wetlands, namely, Dagtassified objects. This measure may not be the most suitable in
and Stubble, on the shores of Lake Erie in Ohio, in order gspatial contexiSpatial accuracyi.e., how far the predictions
predict the spatial distribution of a marsh-breeding bird, thare from the actuals) is as important in this application domain
red-winged blackbird Agelaius phoenicelig21], [22]. The due to the effects of discretizations of a continuous wetland into
data was collected from April to June in two successive yeardiscrete pixels, as shown in Fig. 3. Fig. 3(a) shows the actual lo-
1995 and 1996. cations of nests and Fig. 3(b) shows the pixels with actual nests.

A uniform grid was imposed on the two wetlands and difNote the loss of information during the discretization of contin-
ferent types of measurements were recorded at each cell or piyelus space into pixels. Many nest locations barely fall within
In total, the values of seven attributes were recorded at each ailé pixels labeled A” and are quite close to other blank pixels,
Domain knowledge is crucial in deciding which attributes arehich represent “no-nest.” Now let us consider the two predic-
important and which are not. For examplegetation durability tions shown in Fig. 3(c) and (d). Domain scientists prefer the
was chosen overegetation specidsecause specialized knowl-prediction in Fig. 3(d) over the one in Fig. 3(c), since predicted
edge about the bird-nesting habits of the red-winged blackbindst locations are closer on average to some actual nest loca-
suggested that the choice of nest location is more dependentions. The classification accuracy measure cannot distinguish
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Fig.1. (a)Learning dataset: the geometry of the Darr wetland and the locations of the nests; (b) the spatial distrirgedatain durabilityver the marshland,;
(c) the spatial distribution ofvater depthand (d) the spatial distribution afistance to open water
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Fig. 2. Spatial distribution satisfying random distribution assumptions of classical regression.

P Legend
A PP A PlA ® = nest location
Plp A = actual nest in pixel
b * A A A A A A P = predicted nest in pixel
@ (b) (© (d

Fig. 3. Example showing different predictions: (a) the actual locations of nests; (b) pixels with actual nests; (c) locations predicted by amer(d)detations
predicted by another model. Prediction (d) is spatially more accurate than (c).

between Fig. 3(c) and Fig. 3(d), and a measure of spatial ac- toryfunctions. LetX = [1, X], whichalsoincludesacon-

curacy is needed to capture this preference. stant vector along with explanatory functions;
3) adependent class varialfle: S — C = {cy,...ea};
B. Location Prediction: Problem Formulation 4) a value for parametet, relative importance of spatial

The location prediction problem is a generalization of the nest _ accuracy. N .
location prediction problem. It captures the essential propertiesind: Classification modelfc: R* x --- B* — C.
of similar problems from other domains including crime preven- Objective: Maximize similarity (map,, cs(fc(fx,;-- -,

tion and environmental management. The problem is formalfy)): map(fc)) = (1 — «); classificationaccuracy
defined as follows: (fo, fo) + (@); spatialaccuracy(( fc, fc).
Given: Constraints:
1) a spatial frameworl§ consisting of site§s, , .. ., s,, } for 1) Geographic spacé is a multidimensional Euclidean
an underlying geographic spacg space.

i i . kg —
2) acollectiony ofexplanatory functiongy, :5 — R*,k = 11ne entire surface of the earth cannot be modeled as a Euclidean space but
1,... K. R¥*istherange of possible values for the explanaecally the approximation holds true.
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2) The values of the explanatory functiofis, , . .., fx, and
the dependent class variakle may not be independent
with respect to the corresponding values of nearby spatial
sites (i.e., spatial autocorrelation exists).
3) The domaini* of the explanatory functions is the one-
dimensional (1-D) domain of real numbers.
4) The domain of dependent varialile= {0, 1}. _ , _ ,
The above formulation highlights two important aspects of "Eg{ ﬁ'an E’é’%g;{gfggg’@' ;elf‘r?é;er ssﬂff(‘f;ew'th two clasgesest,—: no-nest)
cation prediction. It explicitly indicates that: 1) the data samples
may exhibit spatial autocorrelation and 2) an objective function
(i.e., a map similarity measure) is a combination of classificke” /1 + ¢¥). This transformed model is referred to lagistic
tion accuracy and spatial accuracy. Timilarity between the regression2].
dependent variabl¢- and the predicted variablg- is a com-  The fundamental limitation of classical regression modeling
bination of the “traditional classification” accuracy and reprds that it assumes that the sample observations are independently
sentation-dependent “spatial classification” accuracy. The regnerated. This may not be true in the case of spatial data. As
ularization termx controls the degree of importancesyfatial  We have shown in our example application, the explanatory and
accuracyand is typically domain dependent. As — 0, the independentvariables show a moderate to high degree of spatial
map similarity measure approaches the traditional classificati@tocorrelation (see Fig. 1). The inappropriateness of the inde-
accuracy measure. Intuitively, captures the spatial autocorref€ndence assumption shows up in the residual errors; she
lation present in spatial data. When the samples are spatially related, the residual errors reveal
The study of the nesting locations of red-winged black birdssystematic variation over space (i.e., they exhibit high spatial
[21], [22] is an instance of the location prediction problem. Thautocorrelation). This is a clear indication that the model was
underlying spatial framework is the collection of 5 m5 m Uunable to capture the spatial relationships existing in the data.
pixels in the grid imposed on the marshes. Examples of the &aus, the model may be a poor fit to the geospatial data. Inci-
planatory variables include water depth, vegetation durabiliggntally, the notion of spatial autocorrelation is similar to that
index, and distance to open water, and examples of dependdritme autocorrelation in time series analysis but is more diffi-
variables include nest locations. The explanatory and dependéif to model because of the multidimensional nature of space.
variables exhibit Spatia| autocorrelation (e_g_, gradua| Variatiésﬂstatistic that quantifies spatial autocorrelation is introduced in
over space, as shown in Fig. 1). Domain scientists prefer sfaé SAR model.

tially accurate predictions which are closer to actual nests (i.e.,The logistic regression finds a discriminant surface, which
o > 0). is a hyperplane in feature space, as shown in Fig. 4. Formally,

a logistic-regression-based classifier is equivalent to a percep-
tron [11], [12], [27], which can only separate linearly separable

classes.
In this section, we briefly review two major statistical

techniques that have been commonly used in the classificatign gayesian Classifiers

problem: 1) logistic regression and 2) Bayesian classifiers. . lassif L2 ina B 'l d
These models do not consider spatial dependence. Reade%ayes'an classifiers estimafe: using Bayes' rule and com-

familiar with these two models will find it easier to understanBUte the probability of the class labeisgiven the dataX as
the comparison between SAR and MRF presented later.

Il. CLASSIFICATION WITHOUT SPATIAL DEPENDENCE

Pr(c; | X) = Pr(X)

1)

A. Logistic Regression Modeling

Logistic regression decomposé@ into two parts, namely, Inthe case of the location prediction problem, where a single
linear regression and logistic transformation. Givemarector class label is predicted for each location, a decision step can
y of observations and am x m matrix X of explanatory data, assign the most likely class chosen by Bayes’ rule to be the
classical linear regression models the relationship betweerlass for a given location. This solution is often referred to as
and X as themaximum a posteriori estimate (MAP).

Given a learning datasér(c; ) can be computed as a ratio of
y=XpB+e¢ the number of locations; with fc(s;) = ¢; to the total number
of locations inS. Pr(X | ¢;) can also be estimated directly from
where = (8o,.-.,3»)". The standard assumption on thehe data using histograms or a kernel density estimate over the
error vectore is that each component is generated from an iwounts of locations; in S for different valuesX of features and
dependent, identical, zero-mean normal distribution (#;,e= different class labels;. This estimation requires a large training
N(0,c%)). set if the domains of feature,, allow a large number of dis-

When the dependent variable is binary, as is the case in thet values. A possible approach is that when the joint-proba-
“bird-nest” example, the model is transformed via the logistiaility distribution is too complicated to be directly estimated, a
function and the dependent variable is interpreted as the prehbfficiently large number of samples from the conditional prob-
ability of finding a nest at a given location. Thi;(¢; |y) =  ability distributions can be used to estimate satisticsof the
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TABLE |
COMPARISON OFLOGISTIC REGRESSION ANDBAYESIAN CLASSIFIERS
Clagsifier Classifier
Criteria Logistic Regression Bayesian
Tnput [N A Four - Jonrde
Intermediate Result B Pr(ec;), Pr(X|c;) using kernel esti.
Output Pr(c;|X) based on 3 Pr(c;]X) based on Pr{c;) and Pr(X|c;)
Decision Select most likely class | Select most likely class
for a given feature value | for a given feature value
Assumptions
- Pr(Xie:) Exponential Family
- class boundaries linearly separable
in feature space
- autocorrelation in class labels | none none
~ A B c D _ A B C D
A 0 1 1 0 A 0 05 05 0
A B
B 1 00 1 B os O 0 g5
c 1 0 0 1 c 05 O 0 o5
C D
D 0 1 1 0 D 0 05 05 0
L ] L .

Fig. 5. Spatial framework and its 4-neighborhood contiguity matrix.

full joint-probability distribution Pr(.X') need not be estimatedamong locations in a spatial framework is often modeled via a
separately. It can be derived from estimate®efX |¢;) and contiguity matrix. A simple contiguity matrix may represent the
Pr(¢;). Alternatively, it may be left as unknown, since for anyneighborhood relationship defined using adjacency, Euclidean
given datasetPr(X) is a constant that does not affect the asdistance, etc. Example definitions of neighborhood using ad-
signment of class labels. jacency include 4-neighborhood and 8-neighborhood. Given a
Table | summarizes key properties of logistic-regregridded spatial framework, the 4-neighborhood assumes that a
sion-based classifiers and Bayesian classifiers. Both modpésr of locations influence each other if they share an edge. The
are applicable to the location prediction problem if spati@-neighborhood assumes that a pair of locations influence each
autocorrelation is insignificant. However, they differ in manyther if they share either an edge or a vertex.
areas. Logistic regression assumes thafeY | ¢;) distribu- Fig. 5(a) shows a gridded spatial framework with four loca-
tion belongs to an exponential family (e.g., binomial, normalions, namely, A, B, C, and D. A binary matrix representation
whereas Bayesian classifiers can work with arbitrary distribof a 4-neighborhood relationship is shown in Fig. 5(b). The row
tions. Logistic regression finds a linear classifier specifie@fby normalized representation of this matrix is calledamtiguity
and Bayesian classifier is most effective when classes are nw@trix, as shown in Fig. 5(c). Other contiguity matrices can be
linearly separable in feature space, since it allows nonlinedesigned to model neighborhood relationship based on distance.
interaction among features in estimatiRg(X | ¢;). Logistic The essential idea is to specify the pairs of locations that influ-
regression can be used with a relatively small training set sineece each other along with the relative intensity of interaction.
it estimates only %k + 1) parameters (i.e/7). Bayesian classi- More general models of spatial relationships using cliques and
fiers usually need a larger training set to estimBt€éX |¢;) hypergraphs are available in [32].
due to the potentially large size of the feature space. In many
domains, parametric probability distributions (e.g., norma@. Logistic Spatial Autoregression (SAR) Model

[30], Beta) are used _With Bayesian classifiers if large training Logistic SAR decomposefk into two parts, namely, SAR
datasets are not available. and logistic transformation. We first show how spatial depen-
dencies are modeled in the framework of logistic regression
1. M ODELING SPATIAL DEPENDENCIES analysis. In the SAR model, the spatial dependencies of the error

Several previous studies [13], [30] have shown that modelifgfm or the dependent variable, are directly modeled in the re-
of spatial dependency (often calledntex} during the classifi- gression equation [2]. If the dependent valygsure related to
cation process improves overall classification accuracy. Spag&ch other, then the regression equation can be modified as
context can be defined by the relationships between spatially ad-
jacent pixels in a small neighborhood. The spatial relationship y=pWy+Xf3+e ()

2While this approach is very flexible and the workhorse of Bayesian statistics, Here.W is the neighborhood relationship contiguity matrix
it is a computationally expensive process. Furthermore, at least for nonstatisti-d ! h fl h h of ial d
cians, itis a nontrivial task to decide what “priors” to choose and what analy@ 10/ IS @ parameter that reflects the strength of spatial depen-

expressions to use for the conditional probability distributions. dencies between the elements of the dependent variable. After
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the correction termpWy is introduced, the components of the The solution procedure can estimadte(l; | L;) from the
residual error vectorare then assumed to be generated from itraining data, wherd.; denotes a set of labels in the neighbor-
dependent and identical standard normal distributions. As in theod of s; excluding the label a$;, by examining the ratios of
case of classical regression, the SAR equation has to be trahs-frequencies of class labels to the total number of locations
formed via the logistic function for binary dependent variable the spatial frameworkPr(X |I;, L;) can be estimated using
We refer to this equation as the SAR model. Notice that whéernel functions from the observed values in the training
p = 0, this equation collapses to the classical regression modddtaset. For reliable estimates, even larger training datasets are
The benefits of modeling spatial autocorrelation are many. Theeded relative to those needed for the Bayesian classifiers
residual error will have much lower spatial autocorrelation (i.ewithout spatial context, since we are estimating a more complex
systematic variation). With the proper choicél®f, the residual distribution. An assumption oRr(X |;, L;) may be useful if
error should, at least theoretically, have no systematic variatidhe training dataset available is not large enough. A common
If the spatial autocorrelation coefficient is statistically signifiassumption is the uniformity of influence from all neighbors
cant, then SAR will quantify the presence of spatial autocoof a location. For computational efficiency, it can be assumed
relation. It will indicate the extent to which variations in thethat only local explanatory dat&(s;) and neighborhood label
dependent variabléy) are explained by the average of neighZ; are relevant in predicting class labkgl = fo(s;). It is
boring observation values. Finally, the model will have a betteommon to assume that all interaction between neighbors is
fit, (i.e., a higherR-squared statistic). We compare SAR witlcaptured via the interaction in the class label variable. Many
linear regression for predicting nest location in Section IV. domains also use specific parametric probability distribution
A mixed model extends the general linear model by allowinigrms, leading to simpler solution procedures. In addition, it is
a more flexible specification of the covariance matrixoThe frequently easier to work with a Gibbs distribution specialized
SAR model can be extended to a mixed model that allows fby the locally defined MRF through the Hammersley-Clifford
explanatory variables from neighboring observations [16]. Thieeorem [4].
new model (MSAR) is given by Solution Procedures:Solution procedures for the MRF
_ Bayesian classifier include stochastic relaxation [9], iterated
y=pWy+ XP+ WXy +e 3) conditional modes [3], dynamic programming [8], highest con-
The marginal impact of the explanatory variables from thigdence first [6], and graph cut [5]. We have used the graph-cut
neighboring observations on the dependent varightan be method and provided its description in the Appendix .
encoded as & « 1 parameter vectoy.

Solution ProceduresThe estimates ofp and 2 can be |v. CompaRISON OFSARAND MRF BAYESIAN CLASSIFIERS
derived using maximum likelihood theory or Bayesian statis- . . .
tics. We have carried out preliminary experiments using the Bath SAR and MRF Bayesian classifiers model spatial con-

spatial econometrics MATLAB package, which implements text and have been used by different communities for classifica-

Bayesian approach using sampling-based Markov chain Mok problems related to spatial datase'ts. Inthi; section, we com-
Carlo (MCMC) methods [17]. Without any optimization,pare these two approaches to modeling spatial context using a

likelihood-based estimation would requif(»?) operations probabilistic framework, as well as an experimental framework.

Recently, [16], [23], and [24] have proposed several effiCient comparison of SAR and MRF Using a Probabilistic
techniques to solve SAR. The techniques studied include divige, awork

and conquer and sparse matrix algorithms. Improved perfor-

mance is obtained by using LU decompositions to compute the/Ve USe a simple probabilistic framework to compare SAR

log-determinant over a grid of values for the parametdry and MRF. We will assume that classese (ci,c2,...,cn)
restricting it to[0, 1]. are discrete and that the class label estinfate; ) for location

’ s; Is arandom variable. We also assume that feature valigs
B. Markov Random Field-Based Bayesian Classifiers are constant since there is no specified generative model. Model

Harameters for SAR are assumed to be constant, fl.&s,a

MRF-based Bayesian classifiers estimate classificati ) !
model /- using MRF and Bayes’ rule. A set of random variconstant vector angdis a constant number). Finally, we assume
' gt the spatial framework is a regular grid.

ables, the interdependency relationship of which is represen{g - _ .

by an undirected graph (i.e., a symmetric neighborhood matrix&we first note that the basic SAR model can be rewritten as

is called avlarkov random field (MRF)18]. The Markov prop- follows

erty specifies that a variable depends only on its neighbors and y=XB+pWy+e

is independent of all other variables. The location prediction (I—pW)y=XB+e

problem can be modeled in this framework by assuming that i . _

the class label; = f-(s;) of different locationss;, constitute y={=pW) KB+ (I —pW) e

an MRF. In other words, random variableis independent of =(QX)B+ Qe 5)

L if W(si,s;) = 0. whereQ = (I — pW)~! andg, p are constants (because we are
The Bayesian rule can be used to prediftom feature value modeling a particular problem). The effect of transforming fea-

vector X and neighborhood class label vecigras follows: ture vectorX to QX can be viewed as a spatial smoothing op-

_ Pr(X |1, L)Pr(l; | Ly) eration. The SAR model is similar to the linear logistic model in

Pr(li | X, L) = Pr(X) ; ) terms of the transformed feature space. In other words, the SAR
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Fig. 6. Spatial datasets wikalt and peppespatial patterns.

model assumes the linear separability of classes in transformmedtly fit to the data. For logistic regression, the probability of
feature space. the set of labeld. is given by

Fig. 6 shows two datasets withsalt and peppespatial dis-
tribution of the feature values. There are two classes, namely,
andco, defined on this feature. Feature values close to 2 map to

classc; and feature values close to 1 or 3willmaprto These  One important difference between logistic regression and
classes are not linearly separable in the original feature SpagiRF is that logistic regression assumes no dependence on
Local spatial smoothing can eliminate tsalt and peppespa- neighboring classes. Given the logistic model, the probability
tial pattern in the feature values to transform the distribution dfat the binary label takes its first valae at a locations; is
the feature values. In the top part of Fig. 6, there are few values 1

of 3 and smoothing revises them close to 1 since most neighbors Pr(l;| X) = T+ exp(— 0 X7) (7)

have values of 1. SAR can perform well with this dataset since b o :
classes are linearly separable in the transformed space. HY{pere the dependence on the neighboring labels exerts itself
ever, the bottom part of Fig. 6 shows a different spatial dataégfough thew r_natnx, and subscript (in Q;) denotes theth
where local smoothing does not make the classes linearly ség)vy 9f the mgtrle. Here, we have used the fact thatan be
arable. Linear classifiers cannot separate these classes evé \ﬂiﬁ'tten asin (5).

1 o find the local relationship between the MRF formulation
the transformed feature space assuniihg (/ — pWW)~! does - . .
) and the logistic regression formulation (for the two class cases
not make the classes linearly separable.

o . c¢1 = 1 ande; = 0), at points;, see (8), shown at the bottom of
Although MRF and SAR classifications have different forg, page, which implies

mulations, they share a common goal, estimating the posterior .
probability distributiorp(l; | X ). However, the posterior for the Q; X3 =1In <Pr()‘ |l =1,L;)Pr(l; =1, Li)) 9)

two models is computed differently with different assumptions. Pr(X[l; =0,L)Pr(l; =0, L;)

For MRF, the posterior is computed using Bayes’ rule. On thehich shows that the spatial dependence is introduced by
other hand, in logistic regression, the posterior distributionis dhe W term through@),. More importantly, it also shows

N
Pr(L|X) = Hp(zi | X). (6)

(X | lz = 1,Li)PI‘(li = 1,Li) + PI‘(X | lz = O,Li)PI‘(li = O,Li)
1
1+ exp(—QiXj)

®)
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Fig. 7. Experimental method for the evaluation of SAR and MRF.

TABLE I
CONFUSION MATRIX

Predicted Nest (Present) | Predicted No-nest (Absence)

Actual Nest (Present) A, P, AP,
Actual No-nest {Absence) Apn Py Ann Pon

that, in fitting 5, we are trying to simultaneously fit themodel (GMM) and polynomial$P) for MRF-based Bayesian
relative importance of the features and the relative frequenchassifiers. We refer to these two families as MRF-GMM and
(Pr(l; =1,L;)/Prx(l; =0,L;)) of the labels. In contrast, MRF-P, respectively.

in the MRF formulation, we explicitymodel the relative The goals of the experiments were:

frequencies in the class prior term. Finally, this relationship 1) to determine whether the real bird habitat datasets follow
shows that we are making distributional assumptions about the 5 Gaussian distribution:

class conditional distributions in logistic regression. Logistic 2) to evaluate the effect of including a SAR tepii¥ y in the
regression and logistic SAR models belong to a more general |ogistic regression equation;

exponential family. The exponential family is given by 3) to compare models of spatial context on both real bird
. habitat datasets and a nonlinear simulated synthetic
Pr(u|v) = e +Bum+o, u (10) dataset.

The experimental setup is shown in Fig. 7. The explanatory
where u, andv are location and label, respective|y_ Thiyariables of bird habitat datasets, as described in Section I-A,

exponential family includes many of the common distribuvere used for the learning portion of the experiments. The de-
tions such as Gaussian, binomial, Bernoulli, and Poisson Rgndent class variable (i.e., nests) that was used in learning ex-
special cases. The parameté;sand = control the form of Periments, is of two types, namely, real [see Fig. 1(a)] and syn-

the distribution. Equation (9) implies that the class condition#tetic. Synthetic bird datasets were generated using the non-
distributions are from the exponentia| fam||y Moreoveﬂjnear equation (11) All variables in these datasets were defined

the distributionsPr(X |; = 1,L;) andPr(X|l; = 0,L;) overa spatial grid of approximately 5000 cells. The 1995 data
are matched in all moments higher than the mean (e.g¢quired in the Stubble wetland served as the testing dataset.

covariance, skew, kurtosis, etc.), such that in the differend8is data is similar to the learning data except for the spatial lo-
In(Pr(X |I; = 1,L;)) — In(Px(X |I; = 0,L;)), the higher cations. We also generated a synthetic dependent class variable

order terms cancel out, leaving the linear téffi«) in (10) on Stubble wetlands.
the left-hand side of (9). Metrics of Comparison for Classification Accuracgonsider
Boolean vectorsl, [i] = fc[s;] representing actual nest loca-
tions, andP,, [¢] = fc(s,) representing predicted nest locations
and their inversesl,,[i] = 1 — A,[{] and Puy[t] = 1 — P, [{].

We carried out experiments to compare the classical regr@se classification accuracy of various measures for such a bi-
sion, SAR, and MRF-based Bayesian classifiers. We compareaty prediction model is summarized in a matrix, as shown in
two families of kernel functions, namely, the Gaussian mixturgable Il, using the Boolean vectors.

B. Experimental Comparison of SAR and MRF
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TABLE Il
SPATIAL CONFUSION MATRIX

Predicted Nest (Present) | Predicted No-nest (Absence)

Actual Nest (Present) A, MP, A, M Py,

Actual No-nest (Absence) A MP, Apn M Py,
TABLE IV

DEFINITION OF MEASURES

Measure Definition Description

ROC Curve locus of the pair (T'PR(b), F PR(b)) The higher the curve above
for each cut-off probability the straight line TPR = FPR,
TPR = % the better the accuracy of the
FPR = Amin_ model

Total Error (TE) TE = AnPnn + AnnPn The lower the value of TE,

Classification Acc.(CA) | CA = p_anlantdmbn the better the model

Spatial Acc. Measure SAM = A,MP, + Ay M Py, the higher the value of SAM

SAM (Normalized) SAMN = AP AiZAM“P)Z:—fXZ%IP;:Z TA P, the better the accuracy of the

] model
ADNP ADNP(A,P) = % Ele d( Ay, Ag.nearest(P)) | the lower the valu e of
ADNP, the better the model

Joint Feature Probability Given No-nest Class

Joint Feature Probability Given No-nest Class

Joint Feature Probability Given No-nest Class

5p

epth
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3
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Water D

Water D
0
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Fig. 8. Joint feature probability distribution for whole datasetsI{&)vegetation durability versus distance to open wiaternest class (b) Pr(water depth
versus vegetation durabilityio-nest class and (c)Pr(water depth versus distance to open whiernest class

Disg\?\ce to 68en Wa?gr 5OVeJ,;etziigon Dur;/i%ility Prt?)%abili(y90

The traditional measure of classification accuracy compar€s Experiments With Real Datasets

the prediction at locatior; with the actual value at locatios.
This classical measure is not sensitive to the distance betweewe used real datasets from Darr and Stubble wetlands for the

predicted nest and actual nest if the distance is no-zero. We prl%gults presented in this subsection. The explanatory variables

pose new map similarity measures (see Table IIl). The new m%rbd class labels were described in Section I-A.

similarity measures compare the prediction at locatipwith 1) Characterizing the Probability DistributiofPr(X | ¢;))
the actual value at;, as well as the actual values at neighbor&/e analyzed actual wetland datasets to estirRa(eX | ;) for
of s;. the feature values ofeg DOW, andWD, which were selected

In Table IlI, A, is an actual nestd,,, is an actual no-nesg,,  as explanatory variables. We explored the statistical probability
is a predicted nesf,, is a predicted no-nest, add = W + 1  distribution of each feature given a certain class category (e.g.,
is a matrix addition of a contiguity matri¥” and an indentity no-nest class). Fig. 8 illustrates the characteristic probability
matrix 1. The spatial accuracy measure (SAM) is defined 4listribution of each feature value given a nest class for the union
SAM = A, MP,, + A, MP,., of real datasets (learning dataset and testing dataset together).

We summarize various accuracy measures in Table IV.  We used the "kernel density estimation toolbox” of MATLAB to

AverageDistance to Nearest Prediction (ADNP) Measurefit a smooth function to obtain the observations shown in Fig. 8.
An orghogonal measure of spatial accuracy is the average disThe joint feature probability distribution for a “no-nest” class
tance to nearest prediction (ADNP) from the actual nest sités,displayed in three slices, shown in Fig. 8(a)—(c). Fig. 8(a)
which is formulated as\DNP(A, P) in Table IV. A, repre- shows the slice of the three-dimensional (3-D) joint feature
sents the actual nest locatiod3,is the map layer of predicted probability of VegversusDOW given a “no-nest” class when
nest locations, and\, - - - nearest(P) denotes the nearest prethe other feature (water depth) is fixed at value 38.6. Fig. 8(b)
dicted nest location tet;,. K is the number of actual nest sitesdisplays the slice of the 3-D joint feature probability \WD
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ROC Curve for learning data(Darr 95) ROC Curve for testing data(Stubble marshland 1995)
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Fig. 9. (a) Comparison of the classical regression model with the SAR model on the Darr learning data. (b) Comparison of the models on the Sgudstke testin

Learning Data Test Data
Classical Measure | Map Similarity Measure| ~ Classical Measure | Map Similarity Measure

Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Predicted| Predicted

Nest No-nest Nest No-nest Nest No-nest Nest No-nest

MREP Actual Nest 42 43 49.06 36.14 9 21 1242 17.58
) Actual No-nest 96 519t 89.65 5197.3 71 1716 67.58 1719.52

Actual Nest 33 52 35.86 49.14 5 25 7.82 22.18

MRF-GMM

Actual No-nest 107 5180 96.35 5190.7 73 1714 69.82 1717.18

SAR Actual Nest 19 66 2083 64.17 4 26 5.96 24.05

Actual No-nest L1l 5176 109.17 | 5177.83 76 1711 74.09 1712.8

Fig. 10. Error matrix of real learning and test data.

versus\Veg given a “no-nest” class when the other featurtrates learning and testing results for the comparison between
(DOW) is fixed at value 7.97. The slice of the joint featur6SAR, MRF-GMM, and MRF-P kernel density estimation.
probability of water depth versus distance to open water givenThe MRF-P model yields better spatial accuracy as well as
a “no-nest” class when the other feature (vegetation) is fixedlztter classification accuracy than MRF-GMM and SAR in both
value 70.45 is shown in Fig. 8(c). learning and testing experiments. In this real dataset, the predic-
Itis clear that none of the probability distributions of the reaion accuracies of MRF-GMM and SAR are very compatible.
datasets fits a normal distribution, which is a key assumption forWe also show maps of the predicted nest locations to visu-
regression models (both classical regression and SAR modedgike the results. Fig. 11(a) shows the actual nest sites for the real
However, MRF relaxes this assumption. In the following suldearning data (i.e., 1995 Darr bird habitat dataset). Fig. 11(b)—(d)
section, we report some experimental results of a comparissitows the predicted nest locations via the MRF-P kernel density
of SAR and MRF on both a real bird habitat dataset and a systimation, the MRF-GMM, and the SAR model, respectively.
thetic bird dataset. We used a 2111 neighborhood matrix in From these maps, we can see that MRF-P yields better predic-
this experimentation. tion. The testing maps are shown in Fig. 11(e)—(h). The ADNP
2) Comparison of Different ModelswWe built a model values for each model prediction were also shown in the corre-
using the 1995 Darr wetland data and then tested it on the 199nding figure captions. As can be seen, the SAR predictions
Stubble wetland data. In the learning data, all of the attributgge extremely localized, missing actual nests over a large part
were used to build the model and in the testing data, one valyfethe Stubble marsh lands. The SAR predictions in Fig. 11(d)
was hidden (in this case, the location of bird nests). Using tB@em to be concentrated on pixels adjacent to water, (i.e., at a
knowledge gained from the 1995 Darr data and the value of tsgall distance to water). This reliance on a single feature is a
independent attributes in the Stubble test data, we predicted gagblem of linear models such as SAR. This is also reflected in
location of the bird nests in Stubble 1995. the relatively large (two to three times larger than those for MRF

Evaluation of the SAR and Classical Regression Models gibdels) ADNP values for the predictions from the SAR model.
Real DatasetsFig. 9(a) illustrates the ROC curves for SAR

and classical regression models built using the real 1995 D&xr Nonlinear Class Boundary Simulation by Synthetic Bird
learning data and Fig. 9(b) displays the ROC curve for the rdahtasets

1995 Stubble testing data. Itis clear that using spatial regressiogy e created a set of synthetic bird datasets based on nonlinear

resulted in better predictions at all cutoff probabilities relativﬁeneralization. To generate a set of nonlinear class boundaries,

to the classical regression model. we used the nonlinear equation
Evaluation of the SAR, MRF-GMM, and MRF-P Modé&\ée

also compared several spatial contextual models. Fig. 10 illus- y = (I — pW) ™! % (3 % cos(X) + ¢ * random(e))  (11)
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Fig. 11. Predicted nest locations and ADNP for the nonlinear synthetic data. (a) Actual nests on learning. (b) MRF-P learning (ABBYP(c) MRF-GMM
learning (ADNP= 2.21). (d) SAR learning (ADNP=6.89). (e) Actual nests on testing. (f) MRF-P testing (ADNP2.40). (g) MRF-GMM testing (ADNP=
3.72). (h) SAR testing (ADNR= 5.74).

Learning Data Test Data
Classical Measure | Map Similarity Measure|  Classical Measure | Map Similarity Measure
Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Predicted | Predicted
Nest No-nest Nest No-nest Nest No-nest Nest No-nest
MRE-P Actual Nest 686 866 1007.39 | 544.61 64 76 72.86 67.14
Actual No-nest 938 2882 616.61 | 3203.39 68 1609 59.14 | 1620.56
Actual Nest 522 1030 890.26 661.74 32 108 40.93 99.07
MRF-GMM

Actual No-nest | 1121 2699 752.74 | 3067.26 81 1596 7207 | 1604.53
SAR Actual Nest 480 1072 489.36 1062.64 21 119 23.68 116.32
Actual No-nest | 1144 2676 1138.64 | 2681.36 119 1558 116.32 | 1560.68

Fig. 12. Error matrix of the nonlinear synthetic learning and testing data generated for Darr95.

where feature values of the attributes and spatial dependency are used
X feature values for the independent variables; to build the model and in the testing step, one value is hidden,
¢ constant value (we chose 12); the location of bird nests. Using the knowledge gained from
random(e) random generated error term; the learning model and the feature values of the explanatory
1 identity matrix; attributes and spatial dependency in the Stubble test data, we
0 spatial coefficient (we usg = 0.6 for both the predicted the bird-nest locations in the nonlinear synthetic data

learning and testing synthetic data); on Stubble 1995.

w contiguity neighborhood matrix. We carried out experiments on these synthetic bird-nesting

To generate synthetic nonlinear learning data, we used the 1@9@%asets. Fig. 12 presents accuracy results for MRF-P, MRF-
Darr wetland feature values foX and the contiguity matrix GMM, and SAR models on the nonlinear simulated learning and
W, and we made thg values the same as SAR/$ value. testing datasets. The confusion matrix shows both classical mea-
Similarly, using 1995 Stubble wetlands feature valuesXqr sure results and map similarity measure results. From Fig. 12,
Stubble 95 contiguity matri¥y’, and the samgs values, we we can easily calculate the total error (TE) of the classical mea-
generated a synthetic testing dataset on Stubble 1995. Forghee and the SAM for the learning model. The TE of MRF-P
nonlinear class boundary simulation, we built a model using 866 + 938 = 1804, which is significantly less than the TE
the nonlinear dataset generated using the Darr wetland afdMRF-GMM (2151) and SAR (2216). The SAM of MRF-P
then tested it on the nonlinear synthetic data generated on i§&007.39 + 3203.39 = 4211, which is greater than those of
1995 Stubble wetland data. In the learning stage, all of théRF-GMM (3958) and SAR (3171).
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Fig. 13. Predicted nest locations and ADNP for the non-linear synthetic data. (a) Actual nests on learning. (b) MRF-P learning (AB®YRc) MRF-GMM
learning (ADNP= 2.21). (d) SAR learning (ADNP= 6.89). (e) Actual nests on testing. (f) MRF-P testing (ADNP2.40). (g) MRF-GMM testing (ADNP=
3.72). (h) SAR testing (ADNP= 5.74).

In the nonlinear synthetic dataset, MRF-P achieves better APPENDIX
spatial accuracy as well as better classification accuracy than SOLVING MARKOV RANDOM FIELDS
MRF-GMM and SAR in both the learning and testing datasets. WITH GRAPH PARTITIONING

The prediction accuracy of MRF-GMM is better than that of \jrr models generalize Markov chains to multidimensional

SAR in both learning and testing. _ ~ structures. Since there is no natural order in a multidimensional
We also drew maps of the predicted nest locations to visualiggace, the notion of a transition probability matrix is absent in
the results (see Fig. 13). Trends were similar to those obsery@gr models.
in Fig. 11. MRF models have found applications in image processing
and spatial statistics, where they have been used to estimate
V. CONCLUSION AND FUTURE WORK spatially varying quantities like intensity and texture for noisy

measurements. Typical images are characterized by piecewise

Inthis paper, we have presented two popular classification ap- o .
’ . . h ntities, i.e., they vary smoothl have sharp jum
proaches that model spatial context in the framework of spatéeoOt quantities, i.e., they vary smoothly buthave sharp jumps

data mining. We h ided th tical Its usi scontinuities) at the boundaries of the homogeneous areas.
atamining. Vve have provided theoretical resulls using a profgs . e of these discontinuities the least-square approach does

bilistic framework, as well as experimental results validatingthﬁaOt provide an adequate framework for the estimation of these

comparison between SAR and MRF. Our paper shows that the, ytities. MRF models provide a mathematical framework to
SAR model makes more restrictive assumptions about the digsde| oura priori belief that spatial quantities consist of smooth

tribution of features and class shapes (or decision bo“”dariﬁﬁiches with occasional jumps.
than MRF. We also observed an interesting relationship betweefy s foliow the approach suggested in [5], where it is shown
classical models that do not consider spatial dependence gt the MAP estimate of a particular configuration of an MRF
modern approaches that explicity model spatial context. TRgn pe obtained by solving a suitable min-cut multiway graph
relationship between SAR and MRF is analogous to the relgartitioning problem. We will formally describe this approach,
tionship between logistic regression and Bayesian classifiersyyt first we will illustrate the underlying concept with some ex-
In the future, we would like to compare other models thaimples.
consider spatial context in the classification decision processgxample 1—A Classification Problem With No Spatial Con-
We would also like to extend the graph-cut solution proceduggraints: Even though MRF models are inherently multidimen-
for SAR. Finally, we observe that “precision” and “recall” [25]sional, we will use a simple 1-D example to illustrate the main
for the learning methods were low (i.e., less than 0.5) for ngstints. Consider the grapf = (V, E) shown in Fig. 14(a).
predictions, even though classification and spatial accuraciEse node-sel/ itself consists of two disjoint sets, namely,
are reasonable. We would like to explore techniques to improaad C. The members of are {si, s, s3} and the members
“precision” and/or “recall.” of C are{cy, co }. Typically, the X (s;)s are the feature values
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Consider the graph shown in Fig. 14(c), in which we have
added two extra edgés; , sz) and(sz, s3) with a weightA. In
this example, we have chosen= 0.2.

Now, if we want to retain the same partitions of the graph
as inExample 1then the cut-set has two extra edges, namely,
s (s1,s2) and(sz, s3). Thus, the sum of the weights of the edges
®) in the cut-seWW is

! ©2 Wer =0.3+0.4+0.45+ 2.

However, depending upoh, the cut-set weight may now not
be minimal. For example, iA = 0.2, then the weight of the
cut-setWeo, consisting of the edg€$s1, c2), (s2,¢1), (s3,¢1),

s, Sy S5 (31732)}1 is

Wea = 0.3+ 0.4 4 0.55 + 0.2,

Fig. 14. MRF solution with graph-cut method. (a) Initially each pixelThus, Weo < Wei. If two neighboring pixels are assigned

is assigned to both labels with different edge weights. The edge Weig*ﬂﬁ?different labels, then the edge between the two neighbors is
correspond to probabilities about assigning each pixel to a different label. . ; .
(b) A min-cut graph partitioning induces a labeling of the pixel set. LabeROded _tO the_ cut-set. Thu_s, there_ Is a penf”‘lty associated with
which correspond to the maximum probabilities are retainedSfatial two neighboring nodes being assigned to different labels every

autocorrelation is modeled by introducing edges between pixel nodegime. Therefore. we can modebatial autocorrela-
(d) A min-cut graph partitioning does not necessarily induce a labeling where ’

the labeling with maximum probabilities are retained. If two neighboring pixeféOn by adding edggs between the_ pixel nodes of t_he.graph.
are assigned different labels, then the edge connecting the pixels is addetd\i® can also modeipatial heterogeneity by assigning

the cut-set. differentweights the As, to the pixel edges.
Formal DescriptionUsing the terminology introduced in [5],
at sites; and thec;s are the labels, such aestor no-nest We now formalize the observations made in the previous two ex-

There is an edge between each member of theS setd each amples. Again, consider a graph= (V, £) with nonnegative

member of seC. Here, we interpret the edge weights as prol§:dge weights. The sét consists of two types of nodes, namely,
abilities. For examplep; = Pr(X(s;) = ¢1) = 0.7 and Pixelsandlabels We will denote the set of pixels @and the

p2 = Pr(X(sy) = c2) = 0.3;p1 +po = 1. set of labels a&’. There are also two types of edges, namely,
Our goal is to provide #abelfor each locations; in S using 7-linksandl-links. An n-link connects two pixels and drlink
explanatory featureX(s;). This is done by partitioning the COnnects a pixel with alabel. There are no edges between labels.
graph into two disjoint sets (nét andC) by removing certain Thel-link (ci,s;) essentially represents the conditional proba-
edges, resulting in the following. bility Pr(l; = ¢ [ X(s;)).
Definition: A setK C F is amultiway cutf the label nodes
1) There is a many-to-one mapplng from the Seto C. C are Comp|ete|y Separated in the gr@h{() — (ME _ K)
Every element of’ must be mapped to one and only onghe sum of the weights of edges in the cut-Eeis denoted as
element ofC'. |K|. A cut-set is amin cut-seif its weight is the minimum of
2) Multiple elements of” cannot belong to a single parti- 5| possible cut-sets.
tion. Thus, there are no edges between elemer@safd  pefinition: A cut-set isfeasibleif it induces a many-to-one
therefore the number of partitions is equal to the card,inapping fromS to C and no elements af can belong to the

nality of C'. _ same set. (From now on, we will only consider feasible cut-sets).
3) The sum of the weights of the edges removed (the cut-set) emma 1: If a graphG (as defined above) has nolinks
is the minimum of all possible cut-sets. and the weights on thélinks are theposteriori probabilities

In this example, the cut-set is easily determined. For examplljer,(ci | 55), then the min-cut induces a Bayesian classification

of the two edges connecting each elemens@ind an element " the pix.el set. _ o o

of C, remove the edge with trenallerweight. Fig. 14(b) shows  Proof: Acut-seti induces a graph in which each pixel is

the graph with the cut-set removed. Thus, we have just sho |gngq to_one and only one label. Thus, every cut-set induces

that when the weights of the edges are interpreted as probaBif'assificationf on the pixel sets. Now

ities, the min-cut graph partition induces a MAP estimate for K| = p N — o | X (s

the pixel labels. We prefer to say that then-cut induces a X1 Z Z H(f(5) = €| X(s5))-

Bayesian classificationn the underlying pixel set. This is be-

cause we will use Bayes’ theorem to calculate the edge weightsus

of the graphs. . . .
Example 2—Adding Spatial Constraintn Example 1we ™" K| = Hit Z Z Pr(f(s;) = e | X(s;))

did not use any information about the spatial proximity of the 805 i CCLei# f(55)

pixels relative to each other. We do that now by introducing = Z Ir}in Z Pr(f(s;) = ci | X(s5)).

additional edges in the graph structure. 5;CS i CCLei£f(s5)

5;CS ¢; CCLei# f(s5)
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We can pass the minimum through the first summation becaueelbox, and C.-T. Lu and H. Yan for their useful comments.
there are no-links and the cut-sets are feasible. Now, for &inally, they would like to thank K. Koffolt, whose comments

givens; € S
Z Pr(f(s;) =) =1
c; cC [1]
Therefore 2]
> min > Pr(f(s;) = | X(s5)) (3]
;€S ¢; CCLei#f(s5) 4]
= Z min(1 — Pr(f(s;) = ¢).
SjCS S [5]
The last term is minimized when we choose the maximum[G]
probabilitiesPr(f(s;) = ¢;) for eachs; € S. Therefore,
min |[K| induces a classifierf which corresponds to the
Bayesian classification of the pixel s€tsince Bayes’ rule was 71
used to determine the edge weights, ;) = Pr(f(s;) = ¢;).
The classificationf minimizing | K| is chosen as théf.) (8]
solution to the location prediction problem.
Definition: A neighborhood systenV of a multiway graph  [g]

@, as defined above, consists of all unordered pixel pairs
{s:,5,} such that there is an-link betweens; ands;. N(s;)
consists of all pixels iz which aren-linkedto s;.

Definition: Let f be the classifier on the pixel sét of a
graphG. Then, the energy associated wittf is defined as

E(f)=3 Y Prf(s)=alX(s))

;€S8 ¢; CCe;7#f(s5)

+§Z S @ 8(7(sy) — Fs0))

5;€5 s, EN(s;5)

(10]

(11]
(12]

[13]
[14]

whereé is the impulse function such that [15]
if S5 = Sk

Lemma 2: Let G be a graph, as defined above, where the*"!
weights of thel-links are Pr(f(s;) = ¢;|X(s;)) and the [1§]
weights of then-links are A. Then, a min-cut-set off induces 9]
a classifierf on S, which minimizes the energy functiaf.

Proof: By construction of the grapt¥, the weight of the
cut-set isE. A min-cut induces arf which minimizesE. [20]

Minimizing E is equivalent to a MAP estimate of the MRF |,y
model [5].

How the Edge-Weights of the Graph Are Generat®d.use a
training set in conjunction with Bayes’ theorem to generate th 2]
edge weights of thé-links of the graph. In general, the labels
of the pixels are not directly observable (that is, what we want
to calculate), but we do have an estimate of the “independenty
variablesY. Thus, given a label s&t and an observatioX at

1, [16]

0,

54, We can compute the requirgdsterioriPr(c; | X (s;)) using  [24]
Bayes’ formulae. [25]
(26]
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