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Abstract—Modeling spatial context (e.g., autocorrelation) is a
key challenge in classification problems that arise in geospatial do-
mains. Markov random fields (MRF) is a popular model for in-
corporating spatial context into image segmentation and land-use
classification problems. The spatial autoregression (SAR) model,
which is an extension of the classical regression model for incorpo-
rating spatial dependence, is popular for prediction and classifica-
tion of spatial data in regional economics, natural resources, and
ecological studies. There is little literature comparing these alter-
native approaches to facilitate the exchange of ideas (e.g., solution
procedures). We argue that the SAR model makes more restric-
tive assumptions about the distribution of feature values and class
boundaries than MRF. The relationship between SAR and MRF is
analogous to the relationship between regression and Bayesian clas-
sifiers. This paper provides comparisons between the two models
using a probabilistic and an experimental framework.

Index Terms—Markov random fields (MRF), spatial autoregres-
sion (SAR), spatial context, spatial data mining.

I. INTRODUCTION

SPATIAL databases (e.g., remote sensing imagery, maps,
census data) are an important subclass of multimedia

databases for several reasons. First, the industry-wide structured
query language multimedia standard (SQL/MM) [20] includes
spatial data types along with traditional image, audio, and video
data types.Second, spatial concepts and techniquesareoftencru-
cial in the indexing and retrieval of image and video databases.
Finally, according to several estimates, spatial data constitutes
almost 80% of all digital data including multimedia data.

Widespread use of spatial databases [28], [29] is leading to an
increasing interest in mining interesting and useful but implicit
spatial patterns [10], [14], [19], [26]. Traditional data-mining al-
gorithms [1] often make assumptions (e.g., independent, iden-
tical distributions) which violate Tobler’s first law of geography:
Everything is related to everything else but nearby things are
more related than distant things[31]. In other words, the values
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ofattributesofnearbyspatial objects tend tosystematicallyaffect
each other. In spatial statistics, an area within statistics devoted
to the analysis of spatial data, this is calledspatial autocorrela-
tion [7]. Knowledge discovery techniques which ignore spatial
autocorrelation typically perform poorly in the presence of spa-
tial data. Often the spatial dependencies arise due to the inherent
characteristics of the phenomena under study; but, in particular,
they arise due to the fact that the spatial resolution of imaging
sensors are finer than the size of the object being observed. For
example, remote sensing satellites have resolutions ranging from
30 m (e.g., NASA’s enhanced thematic mapper of the Landsat 7
satellite) to 1 m (e.g., the IKONOS satellite from SpaceImaging),
while the objects under study (e.g., urban, forest, water) are often
much larger than 30 m. As a result, per-pixel-based classifiers,
which do not take spatial context into account, often produce
classified images withsalt and peppernoise. These classifiers
also suffer in terms of classification accuracy.

There are two major approaches for incorporating spatial
dependence into classification/prediction models: 1) spatial
autoregression (SAR) models [2], [15]–[17], [23], [24] and
2) Markov random field (MRF) models [5], [6], [9], [13],
[18], [30], [32]. Here, we want to make a note regarding the
terms spatial dependenceand spatial context. These words
originated in two different communities. Natural resource
analysts and statisticians usespatial dependenceto refer to
spatial autocorrelationand the image processing community
uses spatial context to mean the same thing. We usespatial
context, spatial dependence, andspatial autocorrelationinter-
changeably to relate to readers of both communities. We also
useclassificationand prediction interchangeably. Natural re-
source scientists, ecologists, and economists have incorporated
spatial dependence in spatial data analysis by incorporating
spatial autocorrelation into the logistic regression models (SAR
models). The SAR model states that the class label of a location
is partially dependent on the class labels of nearby locations and
partially dependent on the feature values. SAR tends to provide
better models than logistic regression in terms of achieving
higher confidence . Similarly, the MRF is a popular model
for incorporating spatial context into image segmentation and
land-use classification problems. Over the last decade, several
researchers [13], [30], [32] have exploited spatial context in
classification using MRF to obtain higher accuracies over their
counterparts (i.e., noncontextual classifiers). MRF provides a
uniform framework for integrating spatial context and deriving
the probability distribution of interacting objects.

There is little literature comparing alternative models for cap-
turing spatial context, hampering the exchange of ideas across
communities. For example, solution procedures [17] for SAR
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tend to be computationally expensive just like the earlier sto-
chastic relaxation approaches [9] for MRF despite optimizations
such as sparse-matrix techniques [23], [24]. Recently, new so-
lution procedures, (e.g., graph cuts [5]), have been proposed for
MRF. An understanding of the relationship between MRF and
SAR may facilitate the development of new solution procedures
for SAR. It may also likely lead to cross fertilization of other ad-
vances across the two communities.

We compare the SAR and MRF models in this paper using
a common probabilistic framework. SAR and MRF use iden-
tical models of spatial contexts for spatial locations. However,
SAR makes more restrictive assumptions about the probability
distributions of feature values as well as the class boundaries.
We show that the SAR assumption of the conditional proba-
bility of a feature value given a class label means that SAR be-
longs to the exponential family of models, (e.g., Gaussian, bi-
nomial). In contrast, MRF models can work with many other
probability distributions. SAR also assumes the linear separa-
bility of classes in a transformed feature space resulting from
a spatial smoothing of feature values based on autocorrelation
parameters. MRF can be used with nonlinear class boundaries.
Readers familiar with classification models which ignore spa-
tial context may find the following analogy helpful. The rela-
tionship between SAR and MRF is similar to the relationship
between logistic regression and Bayesian classifiers.

The rest of the paper is organized as follows. In Section I-A, we
introduce a motivating example which will be used throughout
the paper. In Section I-B, we formally define the location predic-
tion problem. Section II presents a comparison of classical ap-
proaches that do not consider spatial context, namely, logistic re-
gression and Bayesian classifiers. In Section III, we present two
modern approaches thatmodel spatial context, namely, SAR [15]
and MRF. In Section IV, we compare and contrast the SAR and
MRF models in a common probabilistic framework and provide
experimental results. Finally, Section V provides conclusions
and future research directions.

This paper focuses on a comparison of SAR and MRF. Com-
parisons of other models of spatial context, and evaluation and
translation of new solution procedures for MRF (e.g., graph
cuts) to new solution procedures for SAR are beyond the scope
of this paper. We plan to address these issues in future work.

A. An Illustrative Application Domain

First, we introduce an example which will be used throughout
this paper to illustrate the different concepts in spatial data
mining. We are given data about two wetlands, namely, Darr
and Stubble, on the shores of Lake Erie in Ohio, in order to
predict the spatial distribution of a marsh-breeding bird, the
red-winged blackbird (Agelaius phoeniceus) [21], [22]. The
data was collected from April to June in two successive years:
1995 and 1996.

A uniform grid was imposed on the two wetlands and dif-
ferent types of measurements were recorded at each cell or pixel.
In total, the values of seven attributes were recorded at each cell.
Domain knowledge is crucial in deciding which attributes are
important and which are not. For example,vegetation durability
was chosen overvegetation speciesbecause specialized knowl-
edge about the bird-nesting habits of the red-winged blackbird
suggested that the choice of nest location is more dependent on

plant structure and plant resistance to wind and wave action than
on the plant species.

An important goal is to build a model for predicting the loca-
tion of bird nests in the wetlands. Typically, the model is built
using a portion of the data, called thelearning dataor training
data, and then tested on the remainder of the data, called the
testing data.In this study, we built a model using the 1995 Darr
wetland data and then test it on 1995 Stubble wetland data. In the
learning data, all of the attributes are used to build the model and
in the training data, one value ishidden(in our case, the location
of the nests). Using knowledge gained from the 1995 Darr data
and the value of the independent attributes in the test data, we
want to predict the location of the nests in the 1995 Stubble data.

In this paper, we focus on three independent attributes: 1)veg-
etation durability (Veg); 2) distance to open water (DOW); and
3) water depth (WD). The significance of these three variables
was established using classical statistical analysis [22]. The spa-
tial distribution of these variables and the actual nest locations
for the Darr wetland in 1995 are shown in Fig. 1. These maps il-
lustrate the following two important properties inherent in spa-
tial data. The value of attributes which are referenced by spa-
tial location tend to vary gradually over space. While this may
seem obvious, classical data-mining techniques, either explic-
itly or implicitly, assume that the data isindependentlygener-
ated. For example, the maps in Fig. 2 show the spatial distribu-
tion of attributes if they were independently generated. Previous
studies have evaluated classical data-mining techniques, such
as logistic regression [22], neural networks (NNs) [21], deci-
sion trees, and classification rules, to build prediction models for
bird-nesting locations. Logistic regression was used because the
dependent variable is binary (nest/no-nest) and the logistic func-
tion “squashes” the real line onto the unit-interval. The values in
the unit-interval can then be interpreted as probabilities. These
studies concluded that, with the use of logistic regression, the
nests could be classified at a rate 24% better than random [21].
In general, logistic regression and NN models have performed
better than decision trees and classification rules on this dataset.
The fact that classical data-mining techniques ignore spatial au-
tocorrelation and spatial heterogeneity in the model-building
process is one reason why these techniques do a poor job. A
second, more subtle, but equally important reason is related to
the choice of the objective function to measure classification
accuracy. For a two-class problem, the standard way to measure
classification accuracy is to calculate the percentage of correctly
classified objects. This measure may not be the most suitable in
a spatial context.Spatial accuracy(i.e., how far the predictions
are from the actuals) is as important in this application domain
due to the effects of discretizations of a continuous wetland into
discrete pixels, as shown in Fig. 3. Fig. 3(a) shows the actual lo-
cations of nests and Fig. 3(b) shows the pixels with actual nests.
Note the loss of information during the discretization of contin-
uous space into pixels. Many nest locations barely fall within
the pixels labeled “ ” and are quite close to other blank pixels,
which represent “no-nest.” Now let us consider the two predic-
tions shown in Fig. 3(c) and (d). Domain scientists prefer the
prediction in Fig. 3(d) over the one in Fig. 3(c), since predicted
nest locations are closer on average to some actual nest loca-
tions. The classification accuracy measure cannot distinguish
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Fig. 1. (a) Learning dataset: the geometry of the Darr wetland and the locations of the nests; (b) the spatial distribution ofvegetation durabilityover the marshland;
(c) the spatial distribution ofwater depth; and (d) the spatial distribution ofdistance to open water.

Fig. 2. Spatial distribution satisfying random distribution assumptions of classical regression.

Fig. 3. Example showing different predictions: (a) the actual locations of nests; (b) pixels with actual nests; (c) locations predicted by one model;and (d) locations
predicted by another model. Prediction (d) is spatially more accurate than (c).

between Fig. 3(c) and Fig. 3(d), and a measure of spatial ac-
curacy is needed to capture this preference.

B. Location Prediction: Problem Formulation

The location prediction problem is a generalization of the nest
location prediction problem. It captures the essential properties
of similar problems from other domains including crime preven-
tion and environmental management. The problem is formally
defined as follows:

Given:
1) a spatial framework consisting of sites for

an underlying geographic space;
2) acollection ofexplanatory functions

. is the range of possiblevalues for the explana-

tory functions. Let , which also includes a con-
stant vector along with explanatory functions;

3) a dependent class variable ;
4) a value for parameter, relative importance of spatial

accuracy.
Find: Classification model: .
Objective: Maximize similarity

; classificationaccuracy
; spatialaccuracy .

Constraints:
1) Geographic space is a multidimensional Euclidean

space.1

1The entire surface of the earth cannot be modeled as a Euclidean space but
locally the approximation holds true.
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2) The values of the explanatory functions and
the dependent class variable may not be independent
with respect to the corresponding values of nearby spatial
sites (i.e., spatial autocorrelation exists).

3) The domain of the explanatory functions is the one-
dimensional (1-D) domain of real numbers.

4) The domain of dependent variable .
The above formulation highlights two important aspects of lo-

cation prediction. It explicitly indicates that: 1) the data samples
may exhibit spatial autocorrelation and 2) an objective function
(i.e., a map similarity measure) is a combination of classifica-
tion accuracy and spatial accuracy. Thesimilarity between the
dependent variable and the predicted variable is a com-
bination of the “traditional classification” accuracy and repre-
sentation-dependent “spatial classification” accuracy. The reg-
ularization term controls the degree of importance ofspatial
accuracyand is typically domain dependent. As , the
map similarity measure approaches the traditional classification
accuracy measure. Intuitively,captures the spatial autocorre-
lation present in spatial data.

The study of the nesting locations of red-winged black birds
[21], [22] is an instance of the location prediction problem. The
underlying spatial framework is the collection of 5 m5 m
pixels in the grid imposed on the marshes. Examples of the ex-
planatory variables include water depth, vegetation durability
index, and distance to open water, and examples of dependent
variables include nest locations. The explanatory and dependent
variables exhibit spatial autocorrelation (e.g., gradual variation
over space, as shown in Fig. 1). Domain scientists prefer spa-
tially accurate predictions which are closer to actual nests (i.e.,

).

II. CLASSIFICATION WITHOUT SPATIAL DEPENDENCE

In this section, we briefly review two major statistical
techniques that have been commonly used in the classification
problem: 1) logistic regression and 2) Bayesian classifiers.
These models do not consider spatial dependence. Readers
familiar with these two models will find it easier to understand
the comparison between SAR and MRF presented later.

A. Logistic Regression Modeling

Logistic regression decomposes into two parts, namely,
linear regression and logistic transformation. Given an-vector

of observations and an matrix of explanatory data,
classical linear regression models the relationship between
and as

where . The standard assumption on the
error vector is that each component is generated from an in-
dependent, identical, zero-mean normal distribution (i.e.,

).
When the dependent variable is binary, as is the case in the

“bird-nest” example, the model is transformed via the logistic
function and the dependent variable is interpreted as the prob-
ability of finding a nest at a given location. Thus,

Fig. 4. Two-dimensional feature space, with two classes (+: nest,�: no-nest)
that can be separated by a linear surface

. This transformed model is referred to aslogistic
regression[2].

The fundamental limitation of classical regression modeling
is that it assumes that the sample observations are independently
generated. This may not be true in the case of spatial data. As
we have shown in our example application, the explanatory and
independent variables show a moderate to high degree of spatial
autocorrelation (see Fig. 1). The inappropriateness of the inde-
pendence assumption shows up in the residual errors, thes.
When the samples are spatially related, the residual errors reveal
a systematic variation over space (i.e., they exhibit high spatial
autocorrelation). This is a clear indication that the model was
unable to capture the spatial relationships existing in the data.
Thus, the model may be a poor fit to the geospatial data. Inci-
dentally, the notion of spatial autocorrelation is similar to that
of time autocorrelation in time series analysis but is more diffi-
cult to model because of the multidimensional nature of space.
A statistic that quantifies spatial autocorrelation is introduced in
the SAR model.

The logistic regression finds a discriminant surface, which
is a hyperplane in feature space, as shown in Fig. 4. Formally,
a logistic-regression-based classifier is equivalent to a percep-
tron [11], [12], [27], which can only separate linearly separable
classes.

B. Bayesian Classifiers

Bayesian classifiers estimate using Bayes’ rule and com-
pute the probability of the class labelsgiven the data as

(1)

In the case of the location prediction problem, where a single
class label is predicted for each location, a decision step can
assign the most likely class chosen by Bayes’ rule to be the
class for a given location. This solution is often referred to as
themaximum a posteriori estimate (MAP).

Given a learning dataset, can be computed as a ratio of
the number of locations with to the total number
of locations in . can also be estimated directly from
the data using histograms or a kernel density estimate over the
counts of locations in for different values of features and
different class labels . This estimation requires a large training
set if the domains of features allow a large number of dis-
tinct values. A possible approach is that when the joint-proba-
bility distribution is too complicated to be directly estimated, a
sufficiently large number of samples from the conditional prob-
ability distributions can be used to estimate thestatisticsof the
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TABLE I
COMPARISON OFLOGISTIC REGRESSION ANDBAYESIAN CLASSIFIERS

Fig. 5. Spatial framework and its 4-neighborhood contiguity matrix.

full joint-probability distribution.2 need not be estimated
separately. It can be derived from estimates of and

. Alternatively, it may be left as unknown, since for any
given dataset, is a constant that does not affect the as-
signment of class labels.

Table I summarizes key properties of logistic-regres-
sion-based classifiers and Bayesian classifiers. Both models
are applicable to the location prediction problem if spatial
autocorrelation is insignificant. However, they differ in many
areas. Logistic regression assumes that the distribu-
tion belongs to an exponential family (e.g., binomial, normal),
whereas Bayesian classifiers can work with arbitrary distribu-
tions. Logistic regression finds a linear classifier specified by
and Bayesian classifier is most effective when classes are not
linearly separable in feature space, since it allows nonlinear
interaction among features in estimating . Logistic
regression can be used with a relatively small training set since
it estimates only parameters (i.e., ). Bayesian classi-
fiers usually need a larger training set to estimate
due to the potentially large size of the feature space. In many
domains, parametric probability distributions (e.g., normal
[30], Beta) are used with Bayesian classifiers if large training
datasets are not available.

III. M ODELING SPATIAL DEPENDENCIES

Several previous studies [13], [30] have shown that modeling
of spatial dependency (often calledcontext) during the classifi-
cation process improves overall classification accuracy. Spatial
context can be defined by the relationships between spatially ad-
jacent pixels in a small neighborhood. The spatial relationship

2While this approach is very flexible and the workhorse of Bayesian statistics,
it is a computationally expensive process. Furthermore, at least for nonstatisti-
cians, it is a nontrivial task to decide what “priors” to choose and what analytic
expressions to use for the conditional probability distributions.

among locations in a spatial framework is often modeled via a
contiguity matrix. A simple contiguity matrix may represent the
neighborhood relationship defined using adjacency, Euclidean
distance, etc. Example definitions of neighborhood using ad-
jacency include 4-neighborhood and 8-neighborhood. Given a
gridded spatial framework, the 4-neighborhood assumes that a
pair of locations influence each other if they share an edge. The
8-neighborhood assumes that a pair of locations influence each
other if they share either an edge or a vertex.

Fig. 5(a) shows a gridded spatial framework with four loca-
tions, namely, A, B, C, and D. A binary matrix representation
of a 4-neighborhood relationship is shown in Fig. 5(b). The row
normalized representation of this matrix is called acontiguity
matrix, as shown in Fig. 5(c). Other contiguity matrices can be
designed to model neighborhood relationship based on distance.
The essential idea is to specify the pairs of locations that influ-
ence each other along with the relative intensity of interaction.
More general models of spatial relationships using cliques and
hypergraphs are available in [32].

A. Logistic Spatial Autoregression (SAR) Model

Logistic SAR decomposes into two parts, namely, SAR
and logistic transformation. We first show how spatial depen-
dencies are modeled in the framework of logistic regression
analysis. In the SAR model, the spatial dependencies of the error
term or the dependent variable, are directly modeled in the re-
gression equation [2]. If the dependent valuesare related to
each other, then the regression equation can be modified as

(2)

Here, is the neighborhood relationship contiguity matrix
and is a parameter that reflects the strength of spatial depen-
dencies between the elements of the dependent variable. After
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the correction term is introduced, the components of the
residual error vectorare then assumed to be generated from in-
dependent and identical standard normal distributions. As in the
case of classical regression, the SAR equation has to be trans-
formed via the logistic function for binary dependent variables.

We refer to this equation as the SAR model. Notice that when
, this equation collapses to the classical regression model.

The benefits of modeling spatial autocorrelation are many. The
residual error will have much lower spatial autocorrelation (i.e.,
systematic variation). With the proper choice of, the residual
error should, at least theoretically, have no systematic variation.
If the spatial autocorrelation coefficient is statistically signifi-
cant, then SAR will quantify the presence of spatial autocor-
relation. It will indicate the extent to which variations in the
dependent variable are explained by the average of neigh-
boring observation values. Finally, the model will have a better
fit, (i.e., a higher -squared statistic). We compare SAR with
linear regression for predicting nest location in Section IV.

A mixed model extends the general linear model by allowing
a more flexible specification of the covariance matrix of. The
SAR model can be extended to a mixed model that allows for
explanatory variables from neighboring observations [16]. The
new model (MSAR) is given by

(3)

The marginal impact of the explanatory variables from the
neighboring observations on the dependent variablecan be
encoded as a parameter vector.

Solution Procedures:The estimates of and can be
derived using maximum likelihood theory or Bayesian statis-
tics. We have carried out preliminary experiments using the
spatial econometrics MATLAB package, which implements a
Bayesian approach using sampling-based Markov chain Monte
Carlo (MCMC) methods [17]. Without any optimization,
likelihood-based estimation would require operations.
Recently, [16], [23], and [24] have proposed several efficient
techniques to solve SAR. The techniques studied include divide
and conquer and sparse matrix algorithms. Improved perfor-
mance is obtained by using LU decompositions to compute the
log-determinant over a grid of values for the parameterby
restricting it to .

B. Markov Random Field-Based Bayesian Classifiers

MRF-based Bayesian classifiers estimate classification
model using MRF and Bayes’ rule. A set of random vari-
ables, the interdependency relationship of which is represented
by an undirected graph (i.e., a symmetric neighborhood matrix),
is called aMarkov random field (MRF)[18]. The Markov prop-
erty specifies that a variable depends only on its neighbors and
is independent of all other variables. The location prediction
problem can be modeled in this framework by assuming that
the class label of different locations, , constitute
an MRF. In other words, random variableis independent of

if .
The Bayesian rule can be used to predictfrom feature value

vector and neighborhood class label vectoras follows:

(4)

The solution procedure can estimate from the
training data, where denotes a set of labels in the neighbor-
hood of excluding the label at , by examining the ratios of
the frequencies of class labels to the total number of locations
in the spatial framework. can be estimated using
kernel functions from the observed values in the training
dataset. For reliable estimates, even larger training datasets are
needed relative to those needed for the Bayesian classifiers
without spatial context, since we are estimating a more complex
distribution. An assumption on may be useful if
the training dataset available is not large enough. A common
assumption is the uniformity of influence from all neighbors
of a location. For computational efficiency, it can be assumed
that only local explanatory data and neighborhood label

are relevant in predicting class label . It is
common to assume that all interaction between neighbors is
captured via the interaction in the class label variable. Many
domains also use specific parametric probability distribution
forms, leading to simpler solution procedures. In addition, it is
frequently easier to work with a Gibbs distribution specialized
by the locally defined MRF through the Hammersley-Clifford
theorem [4].

Solution Procedures:Solution procedures for the MRF
Bayesian classifier include stochastic relaxation [9], iterated
conditional modes [3], dynamic programming [8], highest con-
fidence first [6], and graph cut [5]. We have used the graph-cut
method and provided its description in the Appendix .

IV. COMPARISON OFSAR AND MRF BAYESIAN CLASSIFIERS

Both SAR and MRF Bayesian classifiers model spatial con-
text and have been used by different communities for classifica-
tion problems related to spatial datasets. In this section, we com-
pare these two approaches to modeling spatial context using a
probabilistic framework, as well as an experimental framework.

A. Comparison of SAR and MRF Using a Probabilistic
Framework

We use a simple probabilistic framework to compare SAR
and MRF. We will assume that classes
are discrete and that the class label estimate for location

is a random variable. We also assume that feature values
are constant since there is no specified generative model. Model
parameters for SAR are assumed to be constant, (i.e.,is a
constant vector andis a constant number). Finally, we assume
that the spatial framework is a regular grid.

We first note that the basic SAR model can be rewritten as
follows:

(5)

where and are constants (because we are
modeling a particular problem). The effect of transforming fea-
ture vector to can be viewed as a spatial smoothing op-
eration. The SAR model is similar to the linear logistic model in
terms of the transformed feature space. In other words, the SAR
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Fig. 6. Spatial datasets withsalt and pepperspatial patterns.

model assumes the linear separability of classes in transformed
feature space.

Fig. 6 shows two datasets with asalt and pepperspatial dis-
tribution of the feature values. There are two classes, namely,
and , defined on this feature. Feature values close to 2 map to
class and feature values close to 1 or 3 will map to. These
classes are not linearly separable in the original feature space.
Local spatial smoothing can eliminate thesalt and pepperspa-
tial pattern in the feature values to transform the distribution of
the feature values. In the top part of Fig. 6, there are few values
of 3 and smoothing revises them close to 1 since most neighbors
have values of 1. SAR can perform well with this dataset since
classes are linearly separable in the transformed space. How-
ever, the bottom part of Fig. 6 shows a different spatial dataset
where local smoothing does not make the classes linearly sep-
arable. Linear classifiers cannot separate these classes even in
the transformed feature space assuming does
not make the classes linearly separable.

Although MRF and SAR classifications have different for-
mulations, they share a common goal, estimating the posterior
probability distribution . However, the posterior for the
two models is computed differently with different assumptions.
For MRF, the posterior is computed using Bayes’ rule. On the
other hand, in logistic regression, the posterior distribution is di-

rectly fit to the data. For logistic regression, the probability of
the set of labels is given by

(6)

One important difference between logistic regression and
MRF is that logistic regression assumes no dependence on
neighboring classes. Given the logistic model, the probability
that the binary label takes its first valueat a location is

(7)

where the dependence on the neighboring labels exerts itself
through the matrix, and subscript (in ) denotes theth
row of the matrix . Here, we have used the fact thatcan be
rewritten as in (5).

To find the local relationship between the MRF formulation
and the logistic regression formulation (for the two class cases

and ), at point , see (8), shown at the bottom of
the page, which implies

(9)

which shows that the spatial dependence is introduced by
the term through . More importantly, it also shows

(8)
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Fig. 7. Experimental method for the evaluation of SAR and MRF.

TABLE II
CONFUSIONMATRIX

that, in fitting , we are trying to simultaneously fit the
relative importance of the features and the relative frequency

of the labels. In contrast,
in the MRF formulation, we explicitlymodel the relative
frequencies in the class prior term. Finally, this relationship
shows that we are making distributional assumptions about the
class conditional distributions in logistic regression. Logistic
regression and logistic SAR models belong to a more general
exponential family. The exponential family is given by

(10)

where and are location and label, respectively. This
exponential family includes many of the common distribu-
tions such as Gaussian, binomial, Bernoulli, and Poisson as
special cases. The parametersand control the form of
the distribution. Equation (9) implies that the class conditional
distributions are from the exponential family. Moreover,
the distributions and
are matched in all moments higher than the mean (e.g.,
covariance, skew, kurtosis, etc.), such that in the difference

, the higher
order terms cancel out, leaving the linear term in (10) on
the left-hand side of (9).

B. Experimental Comparison of SAR and MRF

We carried out experiments to compare the classical regres-
sion, SAR, and MRF-based Bayesian classifiers. We compared
two families of kernel functions, namely, the Gaussian mixture

model (GMM) and polynomials for MRF-based Bayesian
classifiers. We refer to these two families as MRF-GMM and
MRF-P, respectively.
The goals of the experiments were:

1) to determine whether the real bird habitat datasets follow
a Gaussian distribution;

2) to evaluate the effect of including a SAR term in the
logistic regression equation;

3) to compare models of spatial context on both real bird
habitat datasets and a nonlinear simulated synthetic
dataset.

The experimental setup is shown in Fig. 7. The explanatory
variables of bird habitat datasets, as described in Section I-A,
were used for the learning portion of the experiments. The de-
pendent class variable (i.e., nests) that was used in learning ex-
periments, is of two types, namely, real [see Fig. 1(a)] and syn-
thetic. Synthetic bird datasets were generated using the non-
linear equation (11). All variables in these datasets were defined
over a spatial grid of approximately 5000 cells. The 1995 data
acquired in the Stubble wetland served as the testing dataset.
This data is similar to the learning data except for the spatial lo-
cations. We also generated a synthetic dependent class variable
Stubble wetlands.

Metrics of Comparison for Classification Accuracy:Consider
Boolean vectors representing actual nest loca-
tions, and representing predicted nest locations
and their inverses and .
The classification accuracy of various measures for such a bi-
nary prediction model is summarized in a matrix, as shown in
Table II, using the Boolean vectors.



182 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, JUNE 2002

TABLE III
SPATIAL CONFUSIONMATRIX

TABLE IV
DEFINITION OF MEASURES

(a) (b) (c)

Fig. 8. Joint feature probability distribution for whole datasets: (a)Pr(vegetation durability versus distance to open waterj no-nest class); (b) Pr(water depth
versus vegetation durabilityj no-nest class); and (c)Pr(water depth versus distance to open waterj no-nest class).

The traditional measure of classification accuracy compares
the prediction at location with the actual value at location.
This classical measure is not sensitive to the distance between
predicted nest and actual nest if the distance is no-zero. We pro-
pose new map similarity measures (see Table III). The new map
similarity measures compare the prediction at locationwith
the actual value at , as well as the actual values at neighbors
of .

In Table III, is an actual nest, is an actual no-nest,
is a predicted nest, is a predicted no-nest, and
is a matrix addition of a contiguity matrix and an indentity
matrix . The spatial accuracy measure (SAM) is defined as

We summarize various accuracy measures in Table IV.
AverageDistance to Nearest Prediction (ADNP) Measure:

An orghogonal measure of spatial accuracy is the average dis-
tance to nearest prediction (ADNP) from the actual nest sites,
which is formulated as in Table IV. repre-
sents the actual nest locations,is the map layer of predicted
nest locations, and denotes the nearest pre-
dicted nest location to . is the number of actual nest sites.

C. Experiments With Real Datasets

We used real datasets from Darr and Stubble wetlands for the
results presented in this subsection. The explanatory variables
and class labels were described in Section I-A.

1) Characterizing the Probability Distribution
:We analyzed actual wetland datasets to estimate for
the feature values ofVeg, DOW, andWD, which were selected
as explanatory variables. We explored the statistical probability
distribution of each feature given a certain class category (e.g.,
no-nest class). Fig. 8 illustrates the characteristic probability
distribution of each feature value given a nest class for the union
of real datasets (learning dataset and testing dataset together).
We used the “kernel density estimation toolbox” of MATLAB to
fit a smooth function to obtain the observations shown in Fig. 8.

The joint feature probability distribution for a “no-nest” class
is displayed in three slices, shown in Fig. 8(a)–(c). Fig. 8(a)
shows the slice of the three-dimensional (3-D) joint feature
probability of VegversusDOW given a “no-nest” class when
the other feature (water depth) is fixed at value 38.6. Fig. 8(b)
displays the slice of the 3-D joint feature probability ofWD
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(a) (b)

Fig. 9. (a) Comparison of the classical regression model with the SAR model on the Darr learning data. (b) Comparison of the models on the Stubble testing data.

Fig. 10. Error matrix of real learning and test data.

versusVeg given a “no-nest” class when the other feature
(DOW) is fixed at value 7.97. The slice of the joint feature
probability of water depth versus distance to open water given
a “no-nest” class when the other feature (vegetation) is fixed at
value 70.45 is shown in Fig. 8(c).

It is clear that none of the probability distributions of the real
datasets fits a normal distribution, which is a key assumption for
regression models (both classical regression and SAR models).
However, MRF relaxes this assumption. In the following sub-
section, we report some experimental results of a comparison
of SAR and MRF on both a real bird habitat dataset and a syn-
thetic bird dataset. We used a 1111 neighborhood matrix in
this experimentation.

2) Comparison of Different Models:We built a model
using the 1995 Darr wetland data and then tested it on the 1995
Stubble wetland data. In the learning data, all of the attributes
were used to build the model and in the testing data, one value
was hidden (in this case, the location of bird nests). Using the
knowledge gained from the 1995 Darr data and the value of the
independent attributes in the Stubble test data, we predicted the
location of the bird nests in Stubble 1995.

Evaluation of the SAR and Classical Regression Models on
Real Datasets:Fig. 9(a) illustrates the ROC curves for SAR
and classical regression models built using the real 1995 Darr
learning data and Fig. 9(b) displays the ROC curve for the real
1995 Stubble testing data. It is clear that using spatial regression
resulted in better predictions at all cutoff probabilities relative
to the classical regression model.

Evaluation of the SAR, MRF-GMM, and MRF-P Models:We
also compared several spatial contextual models. Fig. 10 illus-

trates learning and testing results for the comparison between
SAR, MRF-GMM, and MRF-P kernel density estimation.

The MRF-P model yields better spatial accuracy as well as
better classification accuracy than MRF-GMM and SAR in both
learning and testing experiments. In this real dataset, the predic-
tion accuracies of MRF-GMM and SAR are very compatible.

We also show maps of the predicted nest locations to visu-
alize the results. Fig. 11(a) shows the actual nest sites for the real
learning data (i.e., 1995 Darr bird habitat dataset). Fig. 11(b)–(d)
shows the predicted nest locations via the MRF-P kernel density
estimation, the MRF-GMM, and the SAR model, respectively.
From these maps, we can see that MRF-P yields better predic-
tion. The testing maps are shown in Fig. 11(e)–(h). The ADNP
values for each model prediction were also shown in the corre-
ponding figure captions. As can be seen, the SAR predictions
are extremely localized, missing actual nests over a large part
of the Stubble marsh lands. The SAR predictions in Fig. 11(d)
seem to be concentrated on pixels adjacent to water, (i.e., at a
small distance to water). This reliance on a single feature is a
problem of linear models such as SAR. This is also reflected in
the relatively large (two to three times larger than those for MRF
models) ADNP values for the predictions from the SAR model.

D. Nonlinear Class Boundary Simulation by Synthetic Bird
Datasets

We created a set of synthetic bird datasets based on nonlinear
generalization. To generate a set of nonlinear class boundaries,
we used the nonlinear equation

(11)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Predicted nest locations and ADNP for the nonlinear synthetic data. (a) Actual nests on learning. (b) MRF-P learning (ADNP= 1.35). (c) MRF-GMM
learning (ADNP= 2.21). (d) SAR learning (ADNP=6.89). (e) Actual nests on testing. (f) MRF-P testing (ADNP= 2.40). (g) MRF-GMM testing (ADNP=
3.72). (h) SAR testing (ADNP= 5.74).

Fig. 12. Error matrix of the nonlinear synthetic learning and testing data generated for Darr95.

where
feature values for the independent variables;
constant value (we chose 12);
random generated error term;
identity matrix;
spatial coefficient (we use for both the
learning and testing synthetic data);
contiguity neighborhood matrix.

To generate synthetic nonlinear learning data, we used the 1995
Darr wetland feature values for and the contiguity matrix

, and we made the values the same as SAR’s value.
Similarly, using 1995 Stubble wetlands feature values for,
Stubble 95 contiguity matrix , and the same values, we
generated a synthetic testing dataset on Stubble 1995. For the
nonlinear class boundary simulation, we built a model using
the nonlinear dataset generated using the Darr wetland and
then tested it on the nonlinear synthetic data generated on the
1995 Stubble wetland data. In the learning stage, all of the

feature values of the attributes and spatial dependency are used
to build the model and in the testing step, one value is hidden,
the location of bird nests. Using the knowledge gained from
the learning model and the feature values of the explanatory
attributes and spatial dependency in the Stubble test data, we
predicted the bird-nest locations in the nonlinear synthetic data
on Stubble 1995.

We carried out experiments on these synthetic bird-nesting
datasets. Fig. 12 presents accuracy results for MRF-P, MRF-
GMM, and SAR models on the nonlinear simulated learning and
testing datasets. The confusion matrix shows both classical mea-
sure results and map similarity measure results. From Fig. 12,
we can easily calculate the total error (TE) of the classical mea-
sure and the SAM for the learning model. The TE of MRF-P
is , which is significantly less than the TE
of MRF-GMM (2151) and SAR (2216). The SAM of MRF-P
is , which is greater than those of
MRF-GMM (3958) and SAR (3171).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Predicted nest locations and ADNP for the non-linear synthetic data. (a) Actual nests on learning. (b) MRF-P learning (ADNP= 1.35). (c) MRF-GMM
learning (ADNP= 2.21). (d) SAR learning (ADNP= 6.89). (e) Actual nests on testing. (f) MRF-P testing (ADNP= 2.40). (g) MRF-GMM testing (ADNP=
3.72). (h) SAR testing (ADNP= 5.74).

In the nonlinear synthetic dataset, MRF-P achieves better
spatial accuracy as well as better classification accuracy than
MRF-GMM and SAR in both the learning and testing datasets.
The prediction accuracy of MRF-GMM is better than that of
SAR in both learning and testing.

We also drew maps of the predicted nest locations to visualize
the results (see Fig. 13). Trends were similar to those observed
in Fig. 11.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented two popular classification ap-
proaches that model spatial context in the framework of spatial
data mining. We have provided theoretical results using a proba-
bilistic framework, as well as experimental results validating the
comparison between SAR and MRF. Our paper shows that the
SAR model makes more restrictive assumptions about the dis-
tribution of features and class shapes (or decision boundaries)
than MRF. We also observed an interesting relationship between
classical models that do not consider spatial dependence and
modern approaches that explicitly model spatial context. The
relationship between SAR and MRF is analogous to the rela-
tionship between logistic regression and Bayesian classifiers.

In the future, we would like to compare other models that
consider spatial context in the classification decision process.
We would also like to extend the graph-cut solution procedure
for SAR. Finally, we observe that “precision” and “recall” [25]
for the learning methods were low (i.e., less than 0.5) for nest
predictions, even though classification and spatial accuracies
are reasonable. We would like to explore techniques to improve
“precision” and/or “recall.”

APPENDIX

SOLVING MARKOV RANDOM FIELDS

WITH GRAPH PARTITIONING

MRF models generalize Markov chains to multidimensional
structures. Since there is no natural order in a multidimensional
space, the notion of a transition probability matrix is absent in
MRF models.

MRF models have found applications in image processing
and spatial statistics, where they have been used to estimate
spatially varying quantities like intensity and texture for noisy
measurements. Typical images are characterized by piecewise
smooth quantities, i.e., they vary smoothly but have sharp jumps
(discontinuities) at the boundaries of the homogeneous areas.
Because of these discontinuities the least-square approach does
not provide an adequate framework for the estimation of these
quantities. MRF models provide a mathematical framework to
model oura priori belief that spatial quantities consist of smooth
patches with occasional jumps.

We follow the approach suggested in [5], where it is shown
that the MAP estimate of a particular configuration of an MRF
can be obtained by solving a suitable min-cut multiway graph
partitioning problem. We will formally describe this approach,
but first we will illustrate the underlying concept with some ex-
amples.

Example 1—A Classification Problem With No Spatial Con-
straints: Even though MRF models are inherently multidimen-
sional, we will use a simple 1-D example to illustrate the main
points. Consider the graph shown in Fig. 14(a).
The node-set itself consists of two disjoint sets, namely,
and . The members of are and the members
of are . Typically, the s are the feature values
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Fig. 14. MRF solution with graph-cut method. (a) Initially each pixel
is assigned to both labels with different edge weights. The edge weights
correspond to probabilities about assigning each pixel to a different label.
(b) A min-cut graph partitioning induces a labeling of the pixel set. Labels
which correspond to the maximum probabilities are retained. (c)Spatial
autocorrelation is modeled by introducing edges between pixel nodes.
(d) A min-cut graph partitioning does not necessarily induce a labeling where
the labeling with maximum probabilities are retained. If two neighboring pixels
are assigned different labels, then the edge connecting the pixels is added to
the cut-set.

at site and the s are the labels, such asnestor no-nest.
There is an edge between each member of the setand each
member of set . Here, we interpret the edge weights as prob-
abilities. For example, and

.
Our goal is to provide alabel for each location in using

explanatory feature . This is done by partitioning the
graph into two disjoint sets (not and ) by removing certain
edges, resulting in the following.

1) There is a many-to-one mapping from the setto .
Every element of must be mapped to one and only one
element of .

2) Multiple elements of cannot belong to a single parti-
tion. Thus, there are no edges between elements ofand
therefore the number of partitions is equal to the cardi-
nality of .

3) The sum of the weights of the edges removed (the cut-set)
is the minimum of all possible cut-sets.

In this example, the cut-set is easily determined. For example,
of the two edges connecting each element ofand an element
of , remove the edge with thesmallerweight. Fig. 14(b) shows
the graph with the cut-set removed. Thus, we have just shown
that when the weights of the edges are interpreted as probabil-
ities, the min-cut graph partition induces a MAP estimate for
the pixel labels. We prefer to say that themin-cut induces a
Bayesian classificationon the underlying pixel set. This is be-
cause we will use Bayes’ theorem to calculate the edge weights
of the graphs.

Example 2—Adding Spatial Constraints:In Example 1, we
did not use any information about the spatial proximity of the
pixels relative to each other. We do that now by introducing
additional edges in the graph structure.

Consider the graph shown in Fig. 14(c), in which we have
added two extra edges and with a weight . In
this example, we have chosen .

Now, if we want to retain the same partitions of the graph
as inExample 1, then the cut-set has two extra edges, namely,

and . Thus, the sum of the weights of the edges
in the cut-set is

However, depending upon, the cut-set weight may now not
be minimal. For example, if , then the weight of the
cut-set , consisting of the edges

, is

Thus, . If two neighboring pixels are assigned
to different labels, then the edge between the two neighbors is
added to the cut-set. Thus, there is a penalty associated with
two neighboring nodes being assigned to different labels every
time. Therefore, we can modelspatial autocorrela-
tion by adding edges between the pixel nodes of the graph.
We can also modelspatial heterogeneity by assigning
differentweights, the s, to the pixel edges.

Formal Description: Using the terminology introduced in [5],
we now formalize the observations made in the previous two ex-
amples. Again, consider a graph with nonnegative
edge weights. The set consists of two types of nodes, namely,
pixelsandlabels. We will denote the set of pixels asand the
set of labels as . There are also two types of edges, namely,

-linksand -links. An -link connects two pixels and an-link
connects a pixel with a label. There are no edges between labels.
The -link essentially represents the conditional proba-
bility .

Definition: A set is amultiway cutif the label nodes
are completely separated in the graph .

The sum of the weights of edges in the cut-setis denoted as
. A cut-set is amin cut-setif its weight is the minimum of

all possible cut-sets.
Definition: A cut-set isfeasibleif it induces a many-to-one

mapping from to and no elements of can belong to the
same set. (From now on, we will only consider feasible cut-sets).

Lemma 1: If a graph (as defined above) has no-links
and the weights on the-links are theposteriori probabilities

, then the min-cut induces a Bayesian classification
on the pixel set .

Proof: A cut-set induces a graph in which each pixel is
assigned to one and only one label. Thus, every cut-set induces
a classification on the pixel set . Now

Thus
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We can pass the minimum through the first summation because
there are no -links and the cut-sets are feasible. Now, for a
given

Therefore

The last term is minimized when we choose the maximum
probabilities for each . Therefore,

induces a classifier which corresponds to the
Bayesian classification of the pixel set, since Bayes’ rule was
used to determine the edge weights .
The classification minimizing is chosen as the
solution to the location prediction problem.

Definition: A neighborhood system of a multiway graph
, as defined above, consists of all unordered pixel pairs

such that there is an-link between and .
consists of all pixels in which are -linked to .

Definition: Let be the classifier on the pixel set of a
graph . Then, the energy associated with is defined as

where is the impulse function such that

if
if

Lemma 2: Let be a graph, as defined above, where the
weights of the -links are and the
weights of the -links are . Then, a min-cut-set of induces
a classifier on , which minimizes the energy function.

Proof: By construction of the graph , the weight of the
cut-set is . A min-cut induces an which minimizes .

Minimizing is equivalent to a MAP estimate of the MRF
model [5].

How the Edge-Weights of the Graph Are Generated:We use a
training set in conjunction with Bayes’ theorem to generate the
edge weights of the-links of the graph. In general, the labels
of the pixels are not directly observable (that is, what we want
to calculate), but we do have an estimate of the “independent”
variables, . Thus, given a label set and an observation at

, we can compute the requiredposteriori using
Bayes’ formulae.
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